Properties

Label 361.2.g
Level $361$
Weight $2$
Character orbit 361.g
Rep. character $\chi_{361}(20,\cdot)$
Character field $\Q(\zeta_{19})$
Dimension $540$
Newform subspaces $1$
Sturm bound $63$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 361 = 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 361.g (of order \(19\) and degree \(18\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 361 \)
Character field: \(\Q(\zeta_{19})\)
Newform subspaces: \( 1 \)
Sturm bound: \(63\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(361, [\chi])\).

Total New Old
Modular forms 576 576 0
Cusp forms 540 540 0
Eisenstein series 36 36 0

Trace form

\( 540 q - 16 q^{2} - 32 q^{3} - 40 q^{4} - 17 q^{5} - 7 q^{6} - 11 q^{7} - 4 q^{8} - 94 q^{9} - 58 q^{10} - 11 q^{11} + 5 q^{12} - q^{13} - 33 q^{14} + 11 q^{15} - 22 q^{16} - 56 q^{17} + 20 q^{18} - q^{19}+ \cdots + 94 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(361, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
361.2.g.a 361.g 361.g $540$ $2.883$ None 361.2.g.a \(-16\) \(-32\) \(-17\) \(-11\) $\mathrm{SU}(2)[C_{19}]$