Properties

Label 361.2.e.i.245.1
Level $361$
Weight $2$
Character 361.245
Analytic conductor $2.883$
Analytic rank $0$
Dimension $12$
Inner twists $6$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [361,2,Mod(28,361)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("361.28"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(361, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([8])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 361 = 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 361.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,-18,0,0,0,3,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(12)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.88259951297\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{9})\)
Coefficient field: 12.0.6053445140625.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4x^{9} + 17x^{6} + 4x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 245.1
Root \(-1.23949 - 1.04005i\) of defining polynomial
Character \(\chi\) \(=\) 361.245
Dual form 361.2.e.i.28.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.280969 + 1.59345i) q^{2} +(-0.292603 - 0.245523i) q^{3} +(-0.580762 - 0.211380i) q^{4} +(-3.04091 + 1.10680i) q^{5} +(0.473442 - 0.397265i) q^{6} +(-1.50000 - 2.59808i) q^{7} +(-1.11803 + 1.93649i) q^{8} +(-0.495610 - 2.81074i) q^{9} +(-0.909234 - 5.15652i) q^{10} +(0.809017 - 1.40126i) q^{11} +(0.118034 + 0.204441i) q^{12} +(0.766044 - 0.642788i) q^{13} +(4.56136 - 1.66020i) q^{14} +(1.16152 + 0.422760i) q^{15} +(-3.71846 - 3.12016i) q^{16} +(0.132655 - 0.752326i) q^{17} +4.61803 q^{18} +2.00000 q^{20} +(-0.198983 + 1.12849i) q^{21} +(2.00553 + 1.68284i) q^{22} +(-5.05739 - 1.84074i) q^{23} +(0.802593 - 0.292120i) q^{24} +(4.19190 - 3.51742i) q^{25} +(0.809017 + 1.40126i) q^{26} +(-1.11803 + 1.93649i) q^{27} +(0.321961 + 1.82593i) q^{28} +(0.628265 + 3.56307i) q^{29} +(-1.00000 + 1.73205i) q^{30} +(-4.42705 - 7.66788i) q^{31} +(2.59074 - 2.17389i) q^{32} +(-0.580762 + 0.211380i) q^{33} +(1.16152 + 0.422760i) q^{34} +(7.43692 + 6.24031i) q^{35} +(-0.306304 + 1.73713i) q^{36} -8.85410 q^{37} -0.381966 q^{39} +(1.25653 - 7.12614i) q^{40} +(2.29813 + 1.92836i) q^{41} +(-1.74229 - 0.634140i) q^{42} +(0.137099 - 0.0499001i) q^{43} +(-0.766044 + 0.642788i) q^{44} +(4.61803 + 7.99867i) q^{45} +(4.35410 - 7.54153i) q^{46} +(0.520945 + 2.95442i) q^{47} +(0.321961 + 1.82593i) q^{48} +(-1.00000 + 1.73205i) q^{49} +(4.42705 + 7.66788i) q^{50} +(-0.223529 + 0.187563i) q^{51} +(-0.580762 + 0.211380i) q^{52} +(-5.94472 - 2.16370i) q^{53} +(-2.77157 - 2.32563i) q^{54} +(-0.909234 + 5.15652i) q^{55} +6.70820 q^{56} -5.85410 q^{58} +(-0.0566506 + 0.321282i) q^{59} +(-0.585206 - 0.491046i) q^{60} +(9.61876 + 3.50094i) q^{61} +(13.4623 - 4.89986i) q^{62} +(-6.55911 + 5.50374i) q^{63} +(-2.11803 - 3.66854i) q^{64} +(-1.61803 + 2.80252i) q^{65} +(-0.173648 - 0.984808i) q^{66} +(1.21554 + 6.89365i) q^{67} +(-0.236068 + 0.408882i) q^{68} +(1.02786 + 1.78031i) q^{69} +(-12.0332 + 10.0970i) q^{70} +(-7.02151 + 2.55562i) q^{71} +(5.99709 + 2.18276i) q^{72} +(-2.07460 - 1.74080i) q^{73} +(2.48773 - 14.1086i) q^{74} -2.09017 q^{75} -4.85410 q^{77} +(0.107320 - 0.608645i) q^{78} +(-10.2776 - 8.62390i) q^{79} +(14.7609 + 5.37252i) q^{80} +(-7.24334 + 2.63636i) q^{81} +(-3.71846 + 3.12016i) q^{82} +(-4.23607 - 7.33708i) q^{83} +(0.354102 - 0.613323i) q^{84} +(0.429282 + 2.43458i) q^{85} +(0.0409928 + 0.232482i) q^{86} +(0.690983 - 1.19682i) q^{87} +(1.80902 + 3.13331i) q^{88} +(5.94752 - 4.99056i) q^{89} +(-14.0430 + 5.11124i) q^{90} +(-2.81908 - 1.02606i) q^{91} +(2.54805 + 2.13806i) q^{92} +(-0.587272 + 3.33059i) q^{93} -4.85410 q^{94} -1.29180 q^{96} +(-2.40574 + 13.6436i) q^{97} +(-2.47897 - 2.08010i) q^{98} +(-4.33953 - 1.57946i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 18 q^{7} + 3 q^{11} - 12 q^{12} + 42 q^{18} + 24 q^{20} + 3 q^{26} - 12 q^{30} - 33 q^{31} - 66 q^{37} - 18 q^{39} + 42 q^{45} + 12 q^{46} - 12 q^{49} + 33 q^{50} - 30 q^{58} - 12 q^{64} - 6 q^{65}+ \cdots - 96 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/361\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{5}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.280969 + 1.59345i −0.198675 + 1.12674i 0.708413 + 0.705799i \(0.249412\pi\)
−0.907087 + 0.420942i \(0.861699\pi\)
\(3\) −0.292603 0.245523i −0.168934 0.141753i 0.554401 0.832250i \(-0.312947\pi\)
−0.723335 + 0.690497i \(0.757392\pi\)
\(4\) −0.580762 0.211380i −0.290381 0.105690i
\(5\) −3.04091 + 1.10680i −1.35994 + 0.494976i −0.916035 0.401099i \(-0.868628\pi\)
−0.443901 + 0.896076i \(0.646406\pi\)
\(6\) 0.473442 0.397265i 0.193282 0.162183i
\(7\) −1.50000 2.59808i −0.566947 0.981981i −0.996866 0.0791130i \(-0.974791\pi\)
0.429919 0.902867i \(-0.358542\pi\)
\(8\) −1.11803 + 1.93649i −0.395285 + 0.684653i
\(9\) −0.495610 2.81074i −0.165203 0.936914i
\(10\) −0.909234 5.15652i −0.287525 1.63063i
\(11\) 0.809017 1.40126i 0.243928 0.422495i −0.717902 0.696144i \(-0.754897\pi\)
0.961830 + 0.273649i \(0.0882307\pi\)
\(12\) 0.118034 + 0.204441i 0.0340735 + 0.0590170i
\(13\) 0.766044 0.642788i 0.212463 0.178277i −0.530346 0.847781i \(-0.677938\pi\)
0.742808 + 0.669504i \(0.233493\pi\)
\(14\) 4.56136 1.66020i 1.21908 0.443707i
\(15\) 1.16152 + 0.422760i 0.299904 + 0.109156i
\(16\) −3.71846 3.12016i −0.929614 0.780039i
\(17\) 0.132655 0.752326i 0.0321737 0.182466i −0.964486 0.264134i \(-0.914914\pi\)
0.996660 + 0.0816685i \(0.0260249\pi\)
\(18\) 4.61803 1.08848
\(19\) 0 0
\(20\) 2.00000 0.447214
\(21\) −0.198983 + 1.12849i −0.0434217 + 0.246257i
\(22\) 2.00553 + 1.68284i 0.427581 + 0.358783i
\(23\) −5.05739 1.84074i −1.05454 0.383821i −0.244165 0.969734i \(-0.578514\pi\)
−0.810374 + 0.585913i \(0.800736\pi\)
\(24\) 0.802593 0.292120i 0.163829 0.0596288i
\(25\) 4.19190 3.51742i 0.838380 0.703484i
\(26\) 0.809017 + 1.40126i 0.158661 + 0.274809i
\(27\) −1.11803 + 1.93649i −0.215166 + 0.372678i
\(28\) 0.321961 + 1.82593i 0.0608450 + 0.345069i
\(29\) 0.628265 + 3.56307i 0.116666 + 0.661645i 0.985912 + 0.167265i \(0.0534937\pi\)
−0.869246 + 0.494380i \(0.835395\pi\)
\(30\) −1.00000 + 1.73205i −0.182574 + 0.316228i
\(31\) −4.42705 7.66788i −0.795122 1.37719i −0.922762 0.385371i \(-0.874074\pi\)
0.127640 0.991821i \(-0.459260\pi\)
\(32\) 2.59074 2.17389i 0.457982 0.384292i
\(33\) −0.580762 + 0.211380i −0.101098 + 0.0367965i
\(34\) 1.16152 + 0.422760i 0.199200 + 0.0725028i
\(35\) 7.43692 + 6.24031i 1.25707 + 1.05481i
\(36\) −0.306304 + 1.73713i −0.0510506 + 0.289522i
\(37\) −8.85410 −1.45561 −0.727803 0.685787i \(-0.759458\pi\)
−0.727803 + 0.685787i \(0.759458\pi\)
\(38\) 0 0
\(39\) −0.381966 −0.0611635
\(40\) 1.25653 7.12614i 0.198675 1.12674i
\(41\) 2.29813 + 1.92836i 0.358908 + 0.301160i 0.804355 0.594149i \(-0.202511\pi\)
−0.445447 + 0.895308i \(0.646955\pi\)
\(42\) −1.74229 0.634140i −0.268841 0.0978500i
\(43\) 0.137099 0.0499001i 0.0209074 0.00760969i −0.331545 0.943439i \(-0.607570\pi\)
0.352453 + 0.935830i \(0.385348\pi\)
\(44\) −0.766044 + 0.642788i −0.115486 + 0.0969039i
\(45\) 4.61803 + 7.99867i 0.688416 + 1.19237i
\(46\) 4.35410 7.54153i 0.641977 1.11194i
\(47\) 0.520945 + 2.95442i 0.0759876 + 0.430947i 0.998940 + 0.0460327i \(0.0146579\pi\)
−0.922952 + 0.384914i \(0.874231\pi\)
\(48\) 0.321961 + 1.82593i 0.0464711 + 0.263551i
\(49\) −1.00000 + 1.73205i −0.142857 + 0.247436i
\(50\) 4.42705 + 7.66788i 0.626080 + 1.08440i
\(51\) −0.223529 + 0.187563i −0.0313003 + 0.0262641i
\(52\) −0.580762 + 0.211380i −0.0805372 + 0.0293131i
\(53\) −5.94472 2.16370i −0.816570 0.297207i −0.100235 0.994964i \(-0.531959\pi\)
−0.716335 + 0.697757i \(0.754182\pi\)
\(54\) −2.77157 2.32563i −0.377164 0.316478i
\(55\) −0.909234 + 5.15652i −0.122601 + 0.695305i
\(56\) 6.70820 0.896421
\(57\) 0 0
\(58\) −5.85410 −0.768681
\(59\) −0.0566506 + 0.321282i −0.00737528 + 0.0418273i −0.988273 0.152695i \(-0.951205\pi\)
0.980898 + 0.194523i \(0.0623158\pi\)
\(60\) −0.585206 0.491046i −0.0755498 0.0633938i
\(61\) 9.61876 + 3.50094i 1.23156 + 0.448250i 0.874130 0.485692i \(-0.161432\pi\)
0.357426 + 0.933942i \(0.383655\pi\)
\(62\) 13.4623 4.89986i 1.70971 0.622283i
\(63\) −6.55911 + 5.50374i −0.826370 + 0.693407i
\(64\) −2.11803 3.66854i −0.264754 0.458568i
\(65\) −1.61803 + 2.80252i −0.200692 + 0.347609i
\(66\) −0.173648 0.984808i −0.0213746 0.121221i
\(67\) 1.21554 + 6.89365i 0.148502 + 0.842194i 0.964489 + 0.264124i \(0.0850828\pi\)
−0.815987 + 0.578070i \(0.803806\pi\)
\(68\) −0.236068 + 0.408882i −0.0286274 + 0.0495842i
\(69\) 1.02786 + 1.78031i 0.123740 + 0.214324i
\(70\) −12.0332 + 10.0970i −1.43824 + 1.20683i
\(71\) −7.02151 + 2.55562i −0.833300 + 0.303296i −0.723213 0.690625i \(-0.757335\pi\)
−0.110087 + 0.993922i \(0.535113\pi\)
\(72\) 5.99709 + 2.18276i 0.706763 + 0.257241i
\(73\) −2.07460 1.74080i −0.242814 0.203745i 0.513257 0.858235i \(-0.328439\pi\)
−0.756071 + 0.654490i \(0.772883\pi\)
\(74\) 2.48773 14.1086i 0.289192 1.64009i
\(75\) −2.09017 −0.241352
\(76\) 0 0
\(77\) −4.85410 −0.553176
\(78\) 0.107320 0.608645i 0.0121517 0.0689154i
\(79\) −10.2776 8.62390i −1.15632 0.970265i −0.156468 0.987683i \(-0.550011\pi\)
−0.999848 + 0.0174184i \(0.994455\pi\)
\(80\) 14.7609 + 5.37252i 1.65032 + 0.600666i
\(81\) −7.24334 + 2.63636i −0.804816 + 0.292929i
\(82\) −3.71846 + 3.12016i −0.410635 + 0.344564i
\(83\) −4.23607 7.33708i −0.464969 0.805350i 0.534231 0.845338i \(-0.320601\pi\)
−0.999200 + 0.0399887i \(0.987268\pi\)
\(84\) 0.354102 0.613323i 0.0386357 0.0669190i
\(85\) 0.429282 + 2.43458i 0.0465622 + 0.264067i
\(86\) 0.0409928 + 0.232482i 0.00442036 + 0.0250691i
\(87\) 0.690983 1.19682i 0.0740812 0.128312i
\(88\) 1.80902 + 3.13331i 0.192842 + 0.334012i
\(89\) 5.94752 4.99056i 0.630436 0.528998i −0.270629 0.962684i \(-0.587232\pi\)
0.901064 + 0.433686i \(0.142787\pi\)
\(90\) −14.0430 + 5.11124i −1.48026 + 0.538772i
\(91\) −2.81908 1.02606i −0.295520 0.107560i
\(92\) 2.54805 + 2.13806i 0.265652 + 0.222909i
\(93\) −0.587272 + 3.33059i −0.0608973 + 0.345366i
\(94\) −4.85410 −0.500662
\(95\) 0 0
\(96\) −1.29180 −0.131843
\(97\) −2.40574 + 13.6436i −0.244266 + 1.38530i 0.577926 + 0.816089i \(0.303862\pi\)
−0.822191 + 0.569211i \(0.807249\pi\)
\(98\) −2.47897 2.08010i −0.250414 0.210122i
\(99\) −4.33953 1.57946i −0.436139 0.158742i
\(100\) −3.17801 + 1.15670i −0.317801 + 0.115670i
\(101\) −7.03255 + 5.90101i −0.699765 + 0.587172i −0.921707 0.387888i \(-0.873205\pi\)
0.221942 + 0.975060i \(0.428760\pi\)
\(102\) −0.236068 0.408882i −0.0233742 0.0404853i
\(103\) 7.16312 12.4069i 0.705803 1.22249i −0.260598 0.965447i \(-0.583920\pi\)
0.966401 0.257039i \(-0.0827470\pi\)
\(104\) 0.388289 + 2.20210i 0.0380749 + 0.215933i
\(105\) −0.643923 3.65187i −0.0628404 0.356386i
\(106\) 5.11803 8.86469i 0.497107 0.861015i
\(107\) 8.20820 + 14.2170i 0.793517 + 1.37441i 0.923777 + 0.382932i \(0.125086\pi\)
−0.130260 + 0.991480i \(0.541581\pi\)
\(108\) 1.05865 0.888311i 0.101868 0.0854777i
\(109\) −3.09328 + 1.12586i −0.296282 + 0.107838i −0.485884 0.874023i \(-0.661502\pi\)
0.189602 + 0.981861i \(0.439280\pi\)
\(110\) −7.96120 2.89764i −0.759071 0.276279i
\(111\) 2.59074 + 2.17389i 0.245902 + 0.206336i
\(112\) −2.52872 + 14.3411i −0.238941 + 1.35510i
\(113\) −6.76393 −0.636297 −0.318149 0.948041i \(-0.603061\pi\)
−0.318149 + 0.948041i \(0.603061\pi\)
\(114\) 0 0
\(115\) 17.4164 1.62409
\(116\) 0.388289 2.20210i 0.0360517 0.204460i
\(117\) −2.18637 1.83458i −0.202130 0.169607i
\(118\) −0.496030 0.180540i −0.0456633 0.0166201i
\(119\) −2.15358 + 0.783840i −0.197419 + 0.0718545i
\(120\) −2.11729 + 1.77662i −0.193282 + 0.162183i
\(121\) 4.19098 + 7.25900i 0.380998 + 0.659909i
\(122\) −8.28115 + 14.3434i −0.749740 + 1.29859i
\(123\) −0.198983 1.12849i −0.0179417 0.101752i
\(124\) 0.950226 + 5.38900i 0.0853329 + 0.483947i
\(125\) −0.763932 + 1.32317i −0.0683282 + 0.118348i
\(126\) −6.92705 11.9980i −0.617111 1.06887i
\(127\) −4.41543 + 3.70498i −0.391806 + 0.328764i −0.817316 0.576189i \(-0.804539\pi\)
0.425510 + 0.904954i \(0.360095\pi\)
\(128\) 12.7968 4.65764i 1.13109 0.411681i
\(129\) −0.0523673 0.0190601i −0.00461068 0.00167815i
\(130\) −4.01106 3.36568i −0.351793 0.295190i
\(131\) 2.62038 14.8609i 0.228944 1.29840i −0.626057 0.779777i \(-0.715332\pi\)
0.855001 0.518627i \(-0.173557\pi\)
\(132\) 0.381966 0.0332459
\(133\) 0 0
\(134\) −11.3262 −0.978438
\(135\) 1.25653 7.12614i 0.108145 0.613320i
\(136\) 1.30856 + 1.09801i 0.112208 + 0.0941538i
\(137\) −7.02151 2.55562i −0.599888 0.218341i 0.0241848 0.999708i \(-0.492301\pi\)
−0.624073 + 0.781366i \(0.714523\pi\)
\(138\) −3.12564 + 1.13764i −0.266072 + 0.0968424i
\(139\) 11.3362 9.51221i 0.961525 0.806815i −0.0196755 0.999806i \(-0.506263\pi\)
0.981200 + 0.192991i \(0.0618189\pi\)
\(140\) −3.00000 5.19615i −0.253546 0.439155i
\(141\) 0.572949 0.992377i 0.0482510 0.0835732i
\(142\) −2.09944 11.9065i −0.176181 0.999171i
\(143\) −0.280969 1.59345i −0.0234958 0.133251i
\(144\) −6.92705 + 11.9980i −0.577254 + 0.999834i
\(145\) −5.85410 10.1396i −0.486157 0.842048i
\(146\) 3.35678 2.81667i 0.277809 0.233110i
\(147\) 0.717861 0.261280i 0.0592082 0.0215500i
\(148\) 5.14213 + 1.87158i 0.422680 + 0.153843i
\(149\) −1.46301 1.22762i −0.119855 0.100570i 0.580890 0.813982i \(-0.302705\pi\)
−0.700745 + 0.713412i \(0.747149\pi\)
\(150\) 0.587272 3.33059i 0.0479506 0.271941i
\(151\) 21.0902 1.71629 0.858147 0.513404i \(-0.171616\pi\)
0.858147 + 0.513404i \(0.171616\pi\)
\(152\) 0 0
\(153\) −2.18034 −0.176270
\(154\) 1.36385 7.73478i 0.109902 0.623286i
\(155\) 21.9491 + 18.4175i 1.76299 + 1.47933i
\(156\) 0.221831 + 0.0807400i 0.0177607 + 0.00646437i
\(157\) 16.7774 6.10646i 1.33898 0.487349i 0.429489 0.903072i \(-0.358694\pi\)
0.909491 + 0.415723i \(0.136472\pi\)
\(158\) 16.6294 13.9538i 1.32297 1.11010i
\(159\) 1.20820 + 2.09267i 0.0958168 + 0.165960i
\(160\) −5.47214 + 9.47802i −0.432610 + 0.749303i
\(161\) 2.80371 + 15.9006i 0.220963 + 1.25314i
\(162\) −2.16576 12.2827i −0.170158 0.965017i
\(163\) −0.881966 + 1.52761i −0.0690809 + 0.119652i −0.898497 0.438980i \(-0.855340\pi\)
0.829416 + 0.558631i \(0.188673\pi\)
\(164\) −0.927051 1.60570i −0.0723905 0.125384i
\(165\) 1.53209 1.28558i 0.119273 0.100082i
\(166\) 12.8815 4.68848i 0.999798 0.363897i
\(167\) 19.0157 + 6.92114i 1.47148 + 0.535574i 0.948501 0.316773i \(-0.102599\pi\)
0.522976 + 0.852347i \(0.324822\pi\)
\(168\) −1.96284 1.64702i −0.151436 0.127070i
\(169\) −2.08378 + 11.8177i −0.160291 + 0.909053i
\(170\) −4.00000 −0.306786
\(171\) 0 0
\(172\) −0.0901699 −0.00687539
\(173\) 0.0819855 0.464963i 0.00623325 0.0353505i −0.981533 0.191295i \(-0.938731\pi\)
0.987766 + 0.155945i \(0.0498422\pi\)
\(174\) 1.71293 + 1.43732i 0.129857 + 0.108963i
\(175\) −15.4264 5.61474i −1.16612 0.424435i
\(176\) −7.38044 + 2.68626i −0.556322 + 0.202485i
\(177\) 0.0954582 0.0800989i 0.00717508 0.00602060i
\(178\) 6.28115 + 10.8793i 0.470792 + 0.815436i
\(179\) 6.11803 10.5967i 0.457283 0.792038i −0.541533 0.840680i \(-0.682156\pi\)
0.998816 + 0.0486416i \(0.0154892\pi\)
\(180\) −0.991219 5.62148i −0.0738811 0.419001i
\(181\) −2.08378 11.8177i −0.154886 0.878402i −0.958890 0.283778i \(-0.908412\pi\)
0.804004 0.594624i \(-0.202699\pi\)
\(182\) 2.42705 4.20378i 0.179905 0.311605i
\(183\) −1.95492 3.38601i −0.144511 0.250301i
\(184\) 9.21892 7.73559i 0.679628 0.570275i
\(185\) 26.9245 9.79972i 1.97953 0.720490i
\(186\) −5.14213 1.87158i −0.377039 0.137231i
\(187\) −0.946883 0.794529i −0.0692429 0.0581017i
\(188\) 0.321961 1.82593i 0.0234815 0.133170i
\(189\) 6.70820 0.487950
\(190\) 0 0
\(191\) 14.2361 1.03009 0.515043 0.857164i \(-0.327776\pi\)
0.515043 + 0.857164i \(0.327776\pi\)
\(192\) −0.280969 + 1.59345i −0.0202772 + 0.114998i
\(193\) −3.87291 3.24976i −0.278778 0.233923i 0.492668 0.870217i \(-0.336022\pi\)
−0.771446 + 0.636295i \(0.780466\pi\)
\(194\) −21.0645 7.66686i −1.51235 0.550449i
\(195\) 1.16152 0.422760i 0.0831785 0.0302745i
\(196\) 0.946883 0.794529i 0.0676345 0.0567521i
\(197\) −1.50000 2.59808i −0.106871 0.185105i 0.807630 0.589689i \(-0.200750\pi\)
−0.914501 + 0.404584i \(0.867416\pi\)
\(198\) 3.73607 6.47106i 0.265511 0.459878i
\(199\) −2.32973 13.2126i −0.165151 0.936615i −0.948909 0.315550i \(-0.897811\pi\)
0.783759 0.621066i \(-0.213300\pi\)
\(200\) 2.12477 + 12.0502i 0.150244 + 0.852076i
\(201\) 1.33688 2.31555i 0.0942963 0.163326i
\(202\) −7.42705 12.8640i −0.522565 0.905110i
\(203\) 8.31472 6.97688i 0.583579 0.489681i
\(204\) 0.169464 0.0616799i 0.0118649 0.00431845i
\(205\) −9.12273 3.32040i −0.637159 0.231907i
\(206\) 17.7572 + 14.9000i 1.23720 + 1.03813i
\(207\) −2.66735 + 15.1273i −0.185394 + 1.05142i
\(208\) −4.85410 −0.336571
\(209\) 0 0
\(210\) 6.00000 0.414039
\(211\) 0.669258 3.79555i 0.0460736 0.261296i −0.953066 0.302762i \(-0.902091\pi\)
0.999140 + 0.0414651i \(0.0132025\pi\)
\(212\) 2.99510 + 2.51319i 0.205705 + 0.172607i
\(213\) 2.68198 + 0.976160i 0.183766 + 0.0668854i
\(214\) −24.9604 + 9.08484i −1.70626 + 0.621027i
\(215\) −0.361677 + 0.303483i −0.0246662 + 0.0206974i
\(216\) −2.50000 4.33013i −0.170103 0.294628i
\(217\) −13.2812 + 23.0036i −0.901583 + 1.56159i
\(218\) −0.924892 5.24532i −0.0626416 0.355258i
\(219\) 0.179629 + 1.01873i 0.0121382 + 0.0688391i
\(220\) 1.61803 2.80252i 0.109088 0.188946i
\(221\) −0.381966 0.661585i −0.0256938 0.0445030i
\(222\) −4.19190 + 3.51742i −0.281342 + 0.236074i
\(223\) −10.9497 + 3.98538i −0.733249 + 0.266881i −0.681540 0.731781i \(-0.738689\pi\)
−0.0517096 + 0.998662i \(0.516467\pi\)
\(224\) −9.53403 3.47010i −0.637019 0.231856i
\(225\) −11.9641 10.0391i −0.797607 0.669272i
\(226\) 1.90045 10.7780i 0.126416 0.716942i
\(227\) −16.4164 −1.08960 −0.544798 0.838568i \(-0.683394\pi\)
−0.544798 + 0.838568i \(0.683394\pi\)
\(228\) 0 0
\(229\) −13.6180 −0.899905 −0.449953 0.893052i \(-0.648559\pi\)
−0.449953 + 0.893052i \(0.648559\pi\)
\(230\) −4.89346 + 27.7522i −0.322666 + 1.82993i
\(231\) 1.42032 + 1.19179i 0.0934505 + 0.0784143i
\(232\) −7.60227 2.76700i −0.499114 0.181663i
\(233\) −4.25480 + 1.54862i −0.278741 + 0.101454i −0.477608 0.878573i \(-0.658496\pi\)
0.198867 + 0.980027i \(0.436274\pi\)
\(234\) 3.53762 2.96842i 0.231261 0.194051i
\(235\) −4.85410 8.40755i −0.316647 0.548448i
\(236\) 0.100813 0.174613i 0.00656237 0.0113664i
\(237\) 0.889879 + 5.04676i 0.0578039 + 0.327822i
\(238\) −0.643923 3.65187i −0.0417393 0.236715i
\(239\) 0.163119 0.282530i 0.0105513 0.0182754i −0.860702 0.509110i \(-0.829975\pi\)
0.871253 + 0.490834i \(0.163308\pi\)
\(240\) −3.00000 5.19615i −0.193649 0.335410i
\(241\) −2.43628 + 2.04428i −0.156935 + 0.131684i −0.717874 0.696173i \(-0.754885\pi\)
0.560939 + 0.827857i \(0.310440\pi\)
\(242\) −12.7444 + 4.63858i −0.819241 + 0.298179i
\(243\) 9.07036 + 3.30134i 0.581864 + 0.211781i
\(244\) −4.84618 4.06643i −0.310245 0.260326i
\(245\) 1.12387 6.37381i 0.0718017 0.407208i
\(246\) 1.85410 0.118213
\(247\) 0 0
\(248\) 19.7984 1.25720
\(249\) −0.561937 + 3.18690i −0.0356113 + 0.201962i
\(250\) −1.89377 1.58906i −0.119772 0.100501i
\(251\) 23.8312 + 8.67386i 1.50421 + 0.547489i 0.957148 0.289600i \(-0.0935221\pi\)
0.547067 + 0.837089i \(0.315744\pi\)
\(252\) 4.97266 1.80990i 0.313248 0.114013i
\(253\) −6.67087 + 5.59753i −0.419394 + 0.351913i
\(254\) −4.66312 8.07676i −0.292590 0.506781i
\(255\) 0.472136 0.817763i 0.0295663 0.0512103i
\(256\) 2.35507 + 13.3563i 0.147192 + 0.834766i
\(257\) −3.53559 20.0514i −0.220544 1.25077i −0.871022 0.491244i \(-0.836542\pi\)
0.650478 0.759525i \(-0.274569\pi\)
\(258\) 0.0450850 0.0780895i 0.00280687 0.00486164i
\(259\) 13.2812 + 23.0036i 0.825251 + 1.42938i
\(260\) 1.53209 1.28558i 0.0950161 0.0797280i
\(261\) 9.70349 3.53178i 0.600631 0.218612i
\(262\) 22.9439 + 8.35090i 1.41748 + 0.515921i
\(263\) −11.4480 9.60599i −0.705912 0.592331i 0.217536 0.976052i \(-0.430198\pi\)
−0.923449 + 0.383721i \(0.874642\pi\)
\(264\) 0.239976 1.36097i 0.0147695 0.0837620i
\(265\) 20.4721 1.25759
\(266\) 0 0
\(267\) −2.96556 −0.181489
\(268\) 0.751243 4.26051i 0.0458895 0.260252i
\(269\) −23.2312 19.4933i −1.41643 1.18853i −0.953218 0.302284i \(-0.902251\pi\)
−0.463216 0.886245i \(-0.653305\pi\)
\(270\) 11.0021 + 4.00444i 0.669567 + 0.243703i
\(271\) −1.07679 + 0.391920i −0.0654105 + 0.0238075i −0.374518 0.927220i \(-0.622192\pi\)
0.309108 + 0.951027i \(0.399970\pi\)
\(272\) −2.84065 + 2.38359i −0.172240 + 0.144526i
\(273\) 0.572949 + 0.992377i 0.0346765 + 0.0600614i
\(274\) 6.04508 10.4704i 0.365197 0.632540i
\(275\) −1.53750 8.71959i −0.0927147 0.525811i
\(276\) −0.220622 1.25121i −0.0132799 0.0753139i
\(277\) −5.70820 + 9.88690i −0.342973 + 0.594046i −0.984983 0.172650i \(-0.944767\pi\)
0.642011 + 0.766696i \(0.278101\pi\)
\(278\) 11.9721 + 20.7363i 0.718041 + 1.24368i
\(279\) −19.3583 + 16.2436i −1.15895 + 0.972477i
\(280\) −20.3990 + 7.42464i −1.21908 + 0.443707i
\(281\) −27.7271 10.0918i −1.65406 0.602029i −0.664648 0.747157i \(-0.731418\pi\)
−0.989413 + 0.145128i \(0.953641\pi\)
\(282\) 1.42032 + 1.19179i 0.0845791 + 0.0709703i
\(283\) 4.52083 25.6389i 0.268736 1.52408i −0.489447 0.872033i \(-0.662801\pi\)
0.758182 0.652042i \(-0.226088\pi\)
\(284\) 4.61803 0.274030
\(285\) 0 0
\(286\) 2.61803 0.154808
\(287\) 1.56283 8.86327i 0.0922512 0.523182i
\(288\) −7.39423 6.20449i −0.435709 0.365603i
\(289\) 15.4264 + 5.61474i 0.907434 + 0.330279i
\(290\) 17.8018 6.47932i 1.04536 0.380479i
\(291\) 4.05375 3.40150i 0.237635 0.199400i
\(292\) 0.836881 + 1.44952i 0.0489748 + 0.0848268i
\(293\) −5.07295 + 8.78661i −0.296365 + 0.513319i −0.975301 0.220878i \(-0.929108\pi\)
0.678937 + 0.734197i \(0.262441\pi\)
\(294\) 0.214641 + 1.21729i 0.0125181 + 0.0709938i
\(295\) −0.183325 1.03969i −0.0106736 0.0605330i
\(296\) 9.89919 17.1459i 0.575379 0.996585i
\(297\) 1.80902 + 3.13331i 0.104970 + 0.181813i
\(298\) 2.36721 1.98632i 0.137129 0.115065i
\(299\) −5.05739 + 1.84074i −0.292477 + 0.106453i
\(300\) 1.21389 + 0.441820i 0.0700840 + 0.0255085i
\(301\) −0.335293 0.281344i −0.0193260 0.0162164i
\(302\) −5.92568 + 33.6062i −0.340984 + 1.93382i
\(303\) 3.50658 0.201448
\(304\) 0 0
\(305\) −33.1246 −1.89671
\(306\) 0.612607 3.47427i 0.0350204 0.198611i
\(307\) 13.2727 + 11.1371i 0.757511 + 0.635627i 0.937478 0.348045i \(-0.113154\pi\)
−0.179966 + 0.983673i \(0.557599\pi\)
\(308\) 2.81908 + 1.02606i 0.160632 + 0.0584652i
\(309\) −5.14213 + 1.87158i −0.292525 + 0.106471i
\(310\) −35.5143 + 29.8001i −2.01708 + 1.69253i
\(311\) −6.32624 10.9574i −0.358728 0.621335i 0.629021 0.777389i \(-0.283456\pi\)
−0.987749 + 0.156053i \(0.950123\pi\)
\(312\) 0.427051 0.739674i 0.0241770 0.0418758i
\(313\) −1.96678 11.1542i −0.111169 0.630471i −0.988576 0.150724i \(-0.951840\pi\)
0.877407 0.479747i \(-0.159272\pi\)
\(314\) 5.01644 + 28.4497i 0.283094 + 1.60551i
\(315\) 13.8541 23.9960i 0.780590 1.35202i
\(316\) 4.14590 + 7.18091i 0.233225 + 0.403958i
\(317\) −13.7888 + 11.5702i −0.774456 + 0.649846i −0.941846 0.336045i \(-0.890911\pi\)
0.167390 + 0.985891i \(0.446466\pi\)
\(318\) −3.67404 + 1.33724i −0.206030 + 0.0749887i
\(319\) 5.50106 + 2.00222i 0.308000 + 0.112103i
\(320\) 10.5011 + 8.81146i 0.587029 + 0.492576i
\(321\) 1.08886 6.17525i 0.0607744 0.344669i
\(322\) −26.1246 −1.45587
\(323\) 0 0
\(324\) 4.76393 0.264663
\(325\) 0.950226 5.38900i 0.0527091 0.298928i
\(326\) −2.18637 1.83458i −0.121092 0.101608i
\(327\) 1.18153 + 0.430040i 0.0653386 + 0.0237813i
\(328\) −6.30365 + 2.29434i −0.348061 + 0.126684i
\(329\) 6.89440 5.78509i 0.380101 0.318942i
\(330\) 1.61803 + 2.80252i 0.0890698 + 0.154273i
\(331\) 5.47214 9.47802i 0.300776 0.520959i −0.675536 0.737327i \(-0.736088\pi\)
0.976312 + 0.216368i \(0.0694211\pi\)
\(332\) 0.909234 + 5.15652i 0.0499007 + 0.283001i
\(333\) 4.38818 + 24.8866i 0.240471 + 1.36378i
\(334\) −16.3713 + 28.3560i −0.895799 + 1.55157i
\(335\) −11.3262 19.6176i −0.618818 1.07183i
\(336\) 4.26097 3.57538i 0.232455 0.195053i
\(337\) −16.0919 + 5.85696i −0.876580 + 0.319049i −0.740829 0.671694i \(-0.765567\pi\)
−0.135751 + 0.990743i \(0.543345\pi\)
\(338\) −18.2455 6.64080i −0.992422 0.361212i
\(339\) 1.97915 + 1.66070i 0.107492 + 0.0901969i
\(340\) 0.265311 1.50465i 0.0143885 0.0816012i
\(341\) −14.3262 −0.775809
\(342\) 0 0
\(343\) −15.0000 −0.809924
\(344\) −0.0566506 + 0.321282i −0.00305440 + 0.0173223i
\(345\) −5.09609 4.27613i −0.274364 0.230219i
\(346\) 0.717861 + 0.261280i 0.0385925 + 0.0140465i
\(347\) 23.8836 8.69292i 1.28214 0.466661i 0.391000 0.920391i \(-0.372129\pi\)
0.891139 + 0.453730i \(0.149907\pi\)
\(348\) −0.654280 + 0.549006i −0.0350731 + 0.0294298i
\(349\) 10.4894 + 18.1681i 0.561482 + 0.972516i 0.997367 + 0.0725137i \(0.0231021\pi\)
−0.435885 + 0.900002i \(0.643565\pi\)
\(350\) 13.2812 23.0036i 0.709907 1.22960i
\(351\) 0.388289 + 2.20210i 0.0207253 + 0.117539i
\(352\) −0.950226 5.38900i −0.0506472 0.287235i
\(353\) −12.2254 + 21.1751i −0.650694 + 1.12703i 0.332261 + 0.943187i \(0.392188\pi\)
−0.982955 + 0.183847i \(0.941145\pi\)
\(354\) 0.100813 + 0.174613i 0.00535815 + 0.00928059i
\(355\) 18.5232 15.5428i 0.983110 0.824927i
\(356\) −4.50900 + 1.64114i −0.238976 + 0.0869803i
\(357\) 0.822596 + 0.299400i 0.0435364 + 0.0158459i
\(358\) 15.1664 + 12.7261i 0.801571 + 0.672598i
\(359\) 1.22152 6.92757i 0.0644693 0.365623i −0.935457 0.353442i \(-0.885011\pi\)
0.999926 0.0121816i \(-0.00387762\pi\)
\(360\) −20.6525 −1.08848
\(361\) 0 0
\(362\) 19.4164 1.02050
\(363\) 0.555957 3.15299i 0.0291802 0.165489i
\(364\) 1.42032 + 1.19179i 0.0744452 + 0.0624670i
\(365\) 8.23540 + 2.99744i 0.431061 + 0.156893i
\(366\) 5.94472 2.16370i 0.310735 0.113098i
\(367\) −12.2140 + 10.2488i −0.637567 + 0.534982i −0.903270 0.429073i \(-0.858840\pi\)
0.265703 + 0.964055i \(0.414396\pi\)
\(368\) 13.0623 + 22.6246i 0.680920 + 1.17939i
\(369\) 4.28115 7.41517i 0.222868 0.386019i
\(370\) 8.05045 + 45.6564i 0.418523 + 2.37356i
\(371\) 3.29562 + 18.6904i 0.171100 + 0.970356i
\(372\) 1.04508 1.81014i 0.0541851 0.0938514i
\(373\) −2.73607 4.73901i −0.141668 0.245377i 0.786457 0.617645i \(-0.211913\pi\)
−0.928125 + 0.372269i \(0.878580\pi\)
\(374\) 1.53209 1.28558i 0.0792224 0.0664755i
\(375\) 0.548397 0.199600i 0.0283191 0.0103073i
\(376\) −6.30365 2.29434i −0.325086 0.118322i
\(377\) 2.77157 + 2.32563i 0.142743 + 0.119776i
\(378\) −1.88480 + 10.6892i −0.0969434 + 0.549793i
\(379\) 15.1246 0.776899 0.388450 0.921470i \(-0.373011\pi\)
0.388450 + 0.921470i \(0.373011\pi\)
\(380\) 0 0
\(381\) 2.20163 0.112793
\(382\) −3.99989 + 22.6845i −0.204652 + 1.16064i
\(383\) −0.292603 0.245523i −0.0149513 0.0125456i 0.635281 0.772281i \(-0.280884\pi\)
−0.650233 + 0.759735i \(0.725329\pi\)
\(384\) −4.88793 1.77906i −0.249436 0.0907873i
\(385\) 14.7609 5.37252i 0.752284 0.273809i
\(386\) 6.26650 5.25822i 0.318957 0.267636i
\(387\) −0.208204 0.360620i −0.0105836 0.0183313i
\(388\) 4.28115 7.41517i 0.217343 0.376448i
\(389\) 1.60981 + 9.12967i 0.0816205 + 0.462893i 0.998035 + 0.0626618i \(0.0199589\pi\)
−0.916414 + 0.400231i \(0.868930\pi\)
\(390\) 0.347296 + 1.96962i 0.0175860 + 0.0997354i
\(391\) −2.05573 + 3.56063i −0.103963 + 0.180069i
\(392\) −2.23607 3.87298i −0.112938 0.195615i
\(393\) −4.41543 + 3.70498i −0.222729 + 0.186892i
\(394\) 4.56136 1.66020i 0.229798 0.0836397i
\(395\) 40.7981 + 14.8493i 2.05277 + 0.747149i
\(396\) 2.18637 + 1.83458i 0.109869 + 0.0921912i
\(397\) −1.99212 + 11.2978i −0.0999814 + 0.567023i 0.893125 + 0.449808i \(0.148508\pi\)
−0.993107 + 0.117215i \(0.962603\pi\)
\(398\) 21.7082 1.08813
\(399\) 0 0
\(400\) −26.5623 −1.32812
\(401\) 6.23198 35.3433i 0.311210 1.76496i −0.281516 0.959557i \(-0.590837\pi\)
0.592726 0.805404i \(-0.298052\pi\)
\(402\) 3.31409 + 2.78085i 0.165292 + 0.138696i
\(403\) −8.32013 3.02828i −0.414455 0.150849i
\(404\) 5.33159 1.94054i 0.265257 0.0965455i
\(405\) 19.1084 16.0339i 0.949505 0.796729i
\(406\) 8.78115 + 15.2094i 0.435801 + 0.754830i
\(407\) −7.16312 + 12.4069i −0.355063 + 0.614987i
\(408\) −0.113301 0.642563i −0.00560925 0.0318116i
\(409\) 1.43986 + 8.16583i 0.0711963 + 0.403774i 0.999490 + 0.0319269i \(0.0101644\pi\)
−0.928294 + 0.371847i \(0.878725\pi\)
\(410\) 7.85410 13.6037i 0.387886 0.671839i
\(411\) 1.42705 + 2.47172i 0.0703912 + 0.121921i
\(412\) −6.78264 + 5.69131i −0.334156 + 0.280391i
\(413\) 0.919690 0.334740i 0.0452550 0.0164715i
\(414\) −23.3552 8.50060i −1.14785 0.417782i
\(415\) 21.0022 + 17.6229i 1.03096 + 0.865075i
\(416\) 0.587272 3.33059i 0.0287934 0.163295i
\(417\) −5.65248 −0.276803
\(418\) 0 0
\(419\) −8.94427 −0.436956 −0.218478 0.975842i \(-0.570109\pi\)
−0.218478 + 0.975842i \(0.570109\pi\)
\(420\) −0.397966 + 2.25698i −0.0194188 + 0.110129i
\(421\) 21.0449 + 17.6587i 1.02566 + 0.860635i 0.990329 0.138741i \(-0.0443055\pi\)
0.0353358 + 0.999375i \(0.488750\pi\)
\(422\) 5.85999 + 2.13286i 0.285260 + 0.103826i
\(423\) 8.04594 2.92848i 0.391207 0.142388i
\(424\) 10.8364 9.09281i 0.526261 0.441586i
\(425\) −2.09017 3.62028i −0.101388 0.175609i
\(426\) −2.30902 + 3.99933i −0.111872 + 0.193768i
\(427\) −5.33242 30.2417i −0.258054 1.46350i
\(428\) −1.76182 9.99176i −0.0851606 0.482970i
\(429\) −0.309017 + 0.535233i −0.0149195 + 0.0258413i
\(430\) −0.381966 0.661585i −0.0184200 0.0319044i
\(431\) −21.1830 + 17.7747i −1.02035 + 0.856176i −0.989672 0.143354i \(-0.954211\pi\)
−0.0306789 + 0.999529i \(0.509767\pi\)
\(432\) 10.1995 3.71232i 0.490725 0.178609i
\(433\) −3.23038 1.17576i −0.155242 0.0565034i 0.263230 0.964733i \(-0.415212\pi\)
−0.418472 + 0.908230i \(0.637434\pi\)
\(434\) −32.9236 27.6262i −1.58038 1.32610i
\(435\) −0.776578 + 4.40419i −0.0372341 + 0.211165i
\(436\) 2.03444 0.0974321
\(437\) 0 0
\(438\) −1.67376 −0.0799754
\(439\) 6.00766 34.0711i 0.286730 1.62613i −0.412309 0.911044i \(-0.635278\pi\)
0.699039 0.715083i \(-0.253611\pi\)
\(440\) −8.96900 7.52589i −0.427581 0.358783i
\(441\) 5.36396 + 1.95232i 0.255427 + 0.0929677i
\(442\) 1.16152 0.422760i 0.0552481 0.0201086i
\(443\) −5.80937 + 4.87464i −0.276011 + 0.231601i −0.770276 0.637710i \(-0.779882\pi\)
0.494265 + 0.869311i \(0.335437\pi\)
\(444\) −1.04508 1.81014i −0.0495975 0.0859055i
\(445\) −12.5623 + 21.7586i −0.595510 + 1.03145i
\(446\) −3.27398 18.5677i −0.155027 0.879204i
\(447\) 0.126675 + 0.718408i 0.00599150 + 0.0339795i
\(448\) −6.35410 + 11.0056i −0.300203 + 0.519967i
\(449\) 1.44427 + 2.50155i 0.0681594 + 0.118056i 0.898091 0.439809i \(-0.144954\pi\)
−0.829932 + 0.557865i \(0.811621\pi\)
\(450\) 19.3583 16.2436i 0.912561 0.765729i
\(451\) 4.56136 1.66020i 0.214786 0.0781758i
\(452\) 3.92823 + 1.42976i 0.184769 + 0.0672503i
\(453\) −6.17105 5.17812i −0.289941 0.243289i
\(454\) 4.61250 26.1588i 0.216475 1.22769i
\(455\) 9.70820 0.455128
\(456\) 0 0
\(457\) 19.7082 0.921911 0.460955 0.887423i \(-0.347507\pi\)
0.460955 + 0.887423i \(0.347507\pi\)
\(458\) 3.82624 21.6997i 0.178788 1.01396i
\(459\) 1.30856 + 1.09801i 0.0610784 + 0.0512508i
\(460\) −10.1148 3.68148i −0.471604 0.171650i
\(461\) −19.6812 + 7.16336i −0.916644 + 0.333631i −0.756902 0.653528i \(-0.773288\pi\)
−0.159741 + 0.987159i \(0.551066\pi\)
\(462\) −2.29813 + 1.92836i −0.106919 + 0.0897156i
\(463\) −14.1353 24.4830i −0.656921 1.13782i −0.981409 0.191931i \(-0.938525\pi\)
0.324487 0.945890i \(-0.394808\pi\)
\(464\) 8.78115 15.2094i 0.407655 0.706079i
\(465\) −1.90045 10.7780i −0.0881314 0.499818i
\(466\) −1.27219 7.21494i −0.0589330 0.334225i
\(467\) 7.97214 13.8081i 0.368906 0.638965i −0.620488 0.784216i \(-0.713066\pi\)
0.989395 + 0.145251i \(0.0463989\pi\)
\(468\) 0.881966 + 1.52761i 0.0407689 + 0.0706138i
\(469\) 16.0869 13.4985i 0.742826 0.623305i
\(470\) 14.7609 5.37252i 0.680869 0.247816i
\(471\) −6.40838 2.33246i −0.295283 0.107474i
\(472\) −0.558822 0.468907i −0.0257219 0.0215832i
\(473\) 0.0409928 0.232482i 0.00188485 0.0106895i
\(474\) −8.29180 −0.380855
\(475\) 0 0
\(476\) 1.41641 0.0649209
\(477\) −3.13534 + 17.7814i −0.143558 + 0.814155i
\(478\) 0.404367 + 0.339304i 0.0184953 + 0.0155194i
\(479\) −21.6977 7.89730i −0.991391 0.360837i −0.205133 0.978734i \(-0.565763\pi\)
−0.786259 + 0.617897i \(0.787985\pi\)
\(480\) 3.92823 1.42976i 0.179299 0.0652593i
\(481\) −6.78264 + 5.69131i −0.309262 + 0.259501i
\(482\) −2.57295 4.45648i −0.117195 0.202987i
\(483\) 3.08359 5.34094i 0.140308 0.243021i
\(484\) −0.899557 5.10164i −0.0408889 0.231893i
\(485\) −7.78514 44.1517i −0.353505 2.00483i
\(486\) −7.80902 + 13.5256i −0.354224 + 0.613534i
\(487\) 2.09017 + 3.62028i 0.0947146 + 0.164051i 0.909489 0.415727i \(-0.136473\pi\)
−0.814775 + 0.579778i \(0.803139\pi\)
\(488\) −17.5336 + 14.7125i −0.793711 + 0.666002i
\(489\) 0.633129 0.230440i 0.0286311 0.0104209i
\(490\) 9.84059 + 3.58168i 0.444552 + 0.161804i
\(491\) −16.2515 13.6366i −0.733418 0.615411i 0.197643 0.980274i \(-0.436671\pi\)
−0.931061 + 0.364863i \(0.881116\pi\)
\(492\) −0.122978 + 0.697445i −0.00554429 + 0.0314432i
\(493\) 2.76393 0.124481
\(494\) 0 0
\(495\) 14.9443 0.671695
\(496\) −7.46318 + 42.3258i −0.335106 + 1.90048i
\(497\) 17.1720 + 14.4090i 0.770268 + 0.646331i
\(498\) −4.92029 1.79084i −0.220484 0.0802495i
\(499\) −23.6094 + 8.59312i −1.05690 + 0.384681i −0.811264 0.584680i \(-0.801220\pi\)
−0.245639 + 0.969361i \(0.578998\pi\)
\(500\) 0.723354 0.606966i 0.0323494 0.0271444i
\(501\) −3.86475 6.69393i −0.172664 0.299063i
\(502\) −20.5172 + 35.5369i −0.915728 + 1.58609i
\(503\) 6.22230 + 35.2884i 0.277439 + 1.57343i 0.731107 + 0.682263i \(0.239004\pi\)
−0.453668 + 0.891171i \(0.649885\pi\)
\(504\) −3.32465 18.8550i −0.148092 0.839870i
\(505\) 14.8541 25.7281i 0.660999 1.14488i
\(506\) −7.04508 12.2024i −0.313192 0.542465i
\(507\) 3.51124 2.94628i 0.155939 0.130849i
\(508\) 3.34747 1.21838i 0.148520 0.0540569i
\(509\) 1.91175 + 0.695820i 0.0847368 + 0.0308417i 0.384041 0.923316i \(-0.374532\pi\)
−0.299304 + 0.954158i \(0.596754\pi\)
\(510\) 1.17041 + 0.982092i 0.0518267 + 0.0434878i
\(511\) −1.41082 + 8.00118i −0.0624112 + 0.353951i
\(512\) 5.29180 0.233867
\(513\) 0 0
\(514\) 32.9443 1.45311
\(515\) −8.05045 + 45.6564i −0.354745 + 2.01186i
\(516\) 0.0263840 + 0.0221388i 0.00116149 + 0.000974606i
\(517\) 4.56136 + 1.66020i 0.200609 + 0.0730155i
\(518\) −40.3868 + 14.6996i −1.77449 + 0.645863i
\(519\) −0.138148 + 0.115920i −0.00606404 + 0.00508833i
\(520\) −3.61803 6.26662i −0.158661 0.274809i
\(521\) 3.13525 5.43042i 0.137358 0.237911i −0.789138 0.614216i \(-0.789472\pi\)
0.926496 + 0.376305i \(0.122806\pi\)
\(522\) 2.90135 + 16.4544i 0.126989 + 0.720188i
\(523\) 0.766901 + 4.34931i 0.0335342 + 0.190182i 0.996973 0.0777457i \(-0.0247722\pi\)
−0.963439 + 0.267928i \(0.913661\pi\)
\(524\) −4.66312 + 8.07676i −0.203709 + 0.352835i
\(525\) 3.13525 + 5.43042i 0.136834 + 0.237003i
\(526\) 18.5232 15.5428i 0.807651 0.677699i
\(527\) −6.35602 + 2.31340i −0.276872 + 0.100773i
\(528\) 2.81908 + 1.02606i 0.122685 + 0.0446535i
\(529\) 4.56988 + 3.83459i 0.198691 + 0.166721i
\(530\) −5.75203 + 32.6214i −0.249852 + 1.41698i
\(531\) 0.931116 0.0404070
\(532\) 0 0
\(533\) 3.00000 0.129944
\(534\) 0.833229 4.72548i 0.0360573 0.204491i
\(535\) −40.6958 34.1478i −1.75943 1.47634i
\(536\) −14.7085 5.35346i −0.635311 0.231234i
\(537\) −4.39190 + 1.59852i −0.189524 + 0.0689813i
\(538\) 37.5889 31.5409i 1.62057 1.35982i
\(539\) 1.61803 + 2.80252i 0.0696937 + 0.120713i
\(540\) −2.23607 + 3.87298i −0.0962250 + 0.166667i
\(541\) −5.18041 29.3796i −0.222723 1.26313i −0.866990 0.498326i \(-0.833948\pi\)
0.644266 0.764801i \(-0.277163\pi\)
\(542\) −0.321961 1.82593i −0.0138294 0.0784306i
\(543\) −2.29180 + 3.96951i −0.0983504 + 0.170348i
\(544\) −1.29180 2.23746i −0.0553853 0.0959302i
\(545\) 8.16027 6.84728i 0.349548 0.293305i
\(546\) −1.74229 + 0.634140i −0.0745630 + 0.0271387i
\(547\) −25.2993 9.20820i −1.08172 0.393714i −0.261173 0.965292i \(-0.584109\pi\)
−0.820548 + 0.571578i \(0.806332\pi\)
\(548\) 3.53762 + 2.96842i 0.151120 + 0.126804i
\(549\) 5.07309 28.7709i 0.216514 1.22791i
\(550\) 14.3262 0.610873
\(551\) 0 0
\(552\) −4.59675 −0.195651
\(553\) −6.98920 + 39.6377i −0.297211 + 1.68557i
\(554\) −14.1505 11.8737i −0.601196 0.504463i
\(555\) −10.2843 3.74316i −0.436542 0.158888i
\(556\) −8.59433 + 3.12808i −0.364481 + 0.132660i
\(557\) −0.627896 + 0.526867i −0.0266048 + 0.0223241i −0.655993 0.754767i \(-0.727750\pi\)
0.629388 + 0.777091i \(0.283306\pi\)
\(558\) −20.4443 35.4105i −0.865475 1.49905i
\(559\) 0.0729490 0.126351i 0.00308541 0.00534409i
\(560\) −8.18310 46.4087i −0.345799 1.96112i
\(561\) 0.0819855 + 0.464963i 0.00346143 + 0.0196308i
\(562\) 23.8713 41.3463i 1.00695 1.74409i
\(563\) −16.4164 28.4341i −0.691869 1.19835i −0.971225 0.238165i \(-0.923454\pi\)
0.279356 0.960188i \(-0.409879\pi\)
\(564\) −0.542516 + 0.455225i −0.0228440 + 0.0191684i
\(565\) 20.5685 7.48632i 0.865323 0.314952i
\(566\) 39.5842 + 14.4075i 1.66385 + 0.605591i
\(567\) 17.7145 + 14.8642i 0.743938 + 0.624238i
\(568\) 2.90135 16.4544i 0.121738 0.690410i
\(569\) −16.9098 −0.708897 −0.354448 0.935076i \(-0.615331\pi\)
−0.354448 + 0.935076i \(0.615331\pi\)
\(570\) 0 0
\(571\) 6.67376 0.279288 0.139644 0.990202i \(-0.455404\pi\)
0.139644 + 0.990202i \(0.455404\pi\)
\(572\) −0.173648 + 0.984808i −0.00726060 + 0.0411769i
\(573\) −4.16552 3.49528i −0.174017 0.146018i
\(574\) 13.6841 + 4.98060i 0.571163 + 0.207886i
\(575\) −27.6747 + 10.0728i −1.15412 + 0.420064i
\(576\) −9.26161 + 7.77141i −0.385900 + 0.323809i
\(577\) 6.06231 + 10.5002i 0.252377 + 0.437130i 0.964180 0.265250i \(-0.0854543\pi\)
−0.711803 + 0.702379i \(0.752121\pi\)
\(578\) −13.2812 + 23.0036i −0.552423 + 0.956825i
\(579\) 0.335335 + 1.90178i 0.0139360 + 0.0790352i
\(580\) 1.25653 + 7.12614i 0.0521746 + 0.295897i
\(581\) −12.7082 + 22.0113i −0.527225 + 0.913181i
\(582\) 4.28115 + 7.41517i 0.177459 + 0.307369i
\(583\) −7.84128 + 6.57962i −0.324753 + 0.272500i
\(584\) 5.69052 2.07118i 0.235476 0.0857061i
\(585\) 8.67906 + 3.15892i 0.358835 + 0.130605i
\(586\) −12.5757 10.5523i −0.519497 0.435910i
\(587\) −0.368935 + 2.09233i −0.0152276 + 0.0863599i −0.991474 0.130301i \(-0.958406\pi\)
0.976247 + 0.216661i \(0.0695167\pi\)
\(588\) −0.472136 −0.0194706
\(589\) 0 0
\(590\) 1.70820 0.0703256
\(591\) −0.198983 + 1.12849i −0.00818507 + 0.0464198i
\(592\) 32.9236 + 27.6262i 1.35315 + 1.13543i
\(593\) −0.665494 0.242220i −0.0273286 0.00994678i 0.328320 0.944567i \(-0.393518\pi\)
−0.355648 + 0.934620i \(0.615740\pi\)
\(594\) −5.50106 + 2.00222i −0.225711 + 0.0821521i
\(595\) 5.68130 4.76718i 0.232911 0.195435i
\(596\) 0.590170 + 1.02220i 0.0241743 + 0.0418711i
\(597\) −2.56231 + 4.43804i −0.104868 + 0.181637i
\(598\) −1.51216 8.57591i −0.0618370 0.350695i
\(599\) −4.93446 27.9847i −0.201616 1.14342i −0.902676 0.430321i \(-0.858400\pi\)
0.701059 0.713103i \(-0.252711\pi\)
\(600\) 2.33688 4.04760i 0.0954028 0.165242i
\(601\) 10.1459 + 17.5732i 0.413860 + 0.716826i 0.995308 0.0967572i \(-0.0308470\pi\)
−0.581448 + 0.813583i \(0.697514\pi\)
\(602\) 0.542516 0.455225i 0.0221113 0.0185536i
\(603\) 18.7738 6.83312i 0.764530 0.278266i
\(604\) −12.2484 4.45804i −0.498379 0.181395i
\(605\) −20.7787 17.4354i −0.844773 0.708848i
\(606\) −0.985238 + 5.58756i −0.0400226 + 0.226979i
\(607\) 6.27051 0.254512 0.127256 0.991870i \(-0.459383\pi\)
0.127256 + 0.991870i \(0.459383\pi\)
\(608\) 0 0
\(609\) −4.14590 −0.168000
\(610\) 9.30698 52.7825i 0.376829 2.13710i
\(611\) 2.29813 + 1.92836i 0.0929725 + 0.0780132i
\(612\) 1.26626 + 0.460880i 0.0511855 + 0.0186300i
\(613\) 18.7415 6.82134i 0.756961 0.275511i 0.0654294 0.997857i \(-0.479158\pi\)
0.691532 + 0.722346i \(0.256936\pi\)
\(614\) −21.4756 + 18.0202i −0.866686 + 0.727236i
\(615\) 1.85410 + 3.21140i 0.0747646 + 0.129496i
\(616\) 5.42705 9.39993i 0.218662 0.378734i
\(617\) 1.33253 + 7.55718i 0.0536458 + 0.304241i 0.999811 0.0194437i \(-0.00618952\pi\)
−0.946165 + 0.323684i \(0.895078\pi\)
\(618\) −1.53750 8.71959i −0.0618473 0.350753i
\(619\) −5.06231 + 8.76817i −0.203471 + 0.352423i −0.949645 0.313329i \(-0.898556\pi\)
0.746173 + 0.665752i \(0.231889\pi\)
\(620\) −8.85410 15.3358i −0.355589 0.615899i
\(621\) 9.21892 7.73559i 0.369942 0.310419i
\(622\) 19.2375 7.00188i 0.771354 0.280750i
\(623\) −21.8871 7.96626i −0.876889 0.319162i
\(624\) 1.42032 + 1.19179i 0.0568585 + 0.0477099i
\(625\) −3.89257 + 22.0759i −0.155703 + 0.883034i
\(626\) 18.3262 0.732464
\(627\) 0 0
\(628\) −11.0344 −0.440322
\(629\) −1.17454 + 6.66117i −0.0468322 + 0.265598i
\(630\) 34.3439 + 28.8180i 1.36829 + 1.14814i
\(631\) −27.5900 10.0419i −1.09834 0.399763i −0.271637 0.962400i \(-0.587565\pi\)
−0.826704 + 0.562636i \(0.809787\pi\)
\(632\) 28.1908 10.2606i 1.12137 0.408145i
\(633\) −1.12772 + 0.946271i −0.0448229 + 0.0376109i
\(634\) −14.5623 25.2227i −0.578343 1.00172i
\(635\) 9.32624 16.1535i 0.370100 0.641033i
\(636\) −0.259330 1.47073i −0.0102831 0.0583184i
\(637\) 0.347296 + 1.96962i 0.0137604 + 0.0780390i
\(638\) −4.73607 + 8.20311i −0.187503 + 0.324764i
\(639\) 10.6631 + 18.4691i 0.421826 + 0.730625i
\(640\) −33.7587 + 28.3269i −1.33443 + 1.11972i
\(641\) −37.1240 + 13.5120i −1.46631 + 0.533694i −0.947096 0.320950i \(-0.895998\pi\)
−0.519215 + 0.854644i \(0.673776\pi\)
\(642\) 9.53403 + 3.47010i 0.376278 + 0.136954i
\(643\) −18.6086 15.6145i −0.733851 0.615774i 0.197327 0.980338i \(-0.436774\pi\)
−0.931179 + 0.364563i \(0.881218\pi\)
\(644\) 1.73279 9.82711i 0.0682813 0.387243i
\(645\) 0.180340 0.00710088
\(646\) 0 0
\(647\) 7.47214 0.293760 0.146880 0.989154i \(-0.453077\pi\)
0.146880 + 0.989154i \(0.453077\pi\)
\(648\) 2.99301 16.9742i 0.117577 0.666810i
\(649\) 0.404367 + 0.339304i 0.0158728 + 0.0133189i
\(650\) 8.32013 + 3.02828i 0.326343 + 0.118779i
\(651\) 9.53403 3.47010i 0.373668 0.136004i
\(652\) 0.835119 0.700748i 0.0327058 0.0274434i
\(653\) 11.7812 + 20.4056i 0.461032 + 0.798531i 0.999013 0.0444262i \(-0.0141459\pi\)
−0.537981 + 0.842957i \(0.680813\pi\)
\(654\) −1.01722 + 1.76188i −0.0397765 + 0.0688949i
\(655\) 8.47973 + 48.0909i 0.331330 + 1.87907i
\(656\) −2.52872 14.3411i −0.0987298 0.559925i
\(657\) −3.86475 + 6.69393i −0.150778 + 0.261155i
\(658\) 7.28115 + 12.6113i 0.283849 + 0.491641i
\(659\) 19.7464 16.5692i 0.769210 0.645444i −0.171296 0.985220i \(-0.554796\pi\)
0.940507 + 0.339775i \(0.110351\pi\)
\(660\) −1.16152 + 0.422760i −0.0452123 + 0.0164559i
\(661\) 5.08976 + 1.85252i 0.197969 + 0.0720547i 0.439102 0.898437i \(-0.355297\pi\)
−0.241133 + 0.970492i \(0.577519\pi\)
\(662\) 13.5653 + 11.3826i 0.527229 + 0.442398i
\(663\) −0.0506699 + 0.287363i −0.00196785 + 0.0111603i
\(664\) 18.9443 0.735180
\(665\) 0 0
\(666\) −40.8885 −1.58440
\(667\) 3.38130 19.1763i 0.130924 0.742510i
\(668\) −9.58059 8.03907i −0.370684 0.311041i
\(669\) 4.18243 + 1.52228i 0.161702 + 0.0588548i
\(670\) 34.4421 12.5359i 1.33061 0.484303i
\(671\) 12.6875 10.6460i 0.489794 0.410986i
\(672\) 1.93769 + 3.35618i 0.0747482 + 0.129468i
\(673\) 17.0623 29.5528i 0.657704 1.13918i −0.323505 0.946226i \(-0.604861\pi\)
0.981209 0.192950i \(-0.0618054\pi\)
\(674\) −4.81148 27.2873i −0.185331 1.05107i
\(675\) 2.12477 + 12.0502i 0.0817825 + 0.463811i
\(676\) 3.70820 6.42280i 0.142623 0.247031i
\(677\) −15.3713 26.6239i −0.590768 1.02324i −0.994129 0.108199i \(-0.965492\pi\)
0.403361 0.915041i \(-0.367842\pi\)
\(678\) −3.20233 + 2.68707i −0.122985 + 0.103196i
\(679\) 39.0558 14.2151i 1.49882 0.545527i
\(680\) −5.19449 1.89064i −0.199200 0.0725028i
\(681\) 4.80349 + 4.03061i 0.184070 + 0.154453i
\(682\) 4.02522 22.8282i 0.154134 0.874136i
\(683\) −9.65248 −0.369342 −0.184671 0.982800i \(-0.559122\pi\)
−0.184671 + 0.982800i \(0.559122\pi\)
\(684\) 0 0
\(685\) 24.1803 0.923883
\(686\) 4.21453 23.9018i 0.160911 0.912574i
\(687\) 3.98468 + 3.34354i 0.152025 + 0.127564i
\(688\) −0.665494 0.242220i −0.0253717 0.00923455i
\(689\) −5.94472 + 2.16370i −0.226476 + 0.0824304i
\(690\) 8.24565 6.91892i 0.313907 0.263399i
\(691\) 19.5902 + 33.9312i 0.745245 + 1.29080i 0.950080 + 0.312006i \(0.101001\pi\)
−0.204835 + 0.978797i \(0.565666\pi\)
\(692\) −0.145898 + 0.252703i −0.00554621 + 0.00960632i
\(693\) 2.40574 + 13.6436i 0.0913865 + 0.518279i
\(694\) 7.14121 + 40.4998i 0.271077 + 1.53735i
\(695\) −23.9443 + 41.4727i −0.908258 + 1.57315i
\(696\) 1.54508 + 2.67617i 0.0585663 + 0.101440i
\(697\) 1.75562 1.47314i 0.0664988 0.0557991i
\(698\) −31.8972 + 11.6096i −1.20733 + 0.439431i
\(699\) 1.62519 + 0.591520i 0.0614703 + 0.0223734i
\(700\) 7.77221 + 6.52166i 0.293762 + 0.246495i
\(701\) −6.88188 + 39.0291i −0.259925 + 1.47411i 0.523181 + 0.852221i \(0.324745\pi\)
−0.783107 + 0.621888i \(0.786366\pi\)
\(702\) −3.61803 −0.136554
\(703\) 0 0
\(704\) −6.85410 −0.258324
\(705\) −0.643923 + 3.65187i −0.0242515 + 0.137537i
\(706\) −30.3065 25.4302i −1.14060 0.957077i
\(707\) 25.8801 + 9.41958i 0.973321 + 0.354260i
\(708\) −0.0723698 + 0.0263405i −0.00271982 + 0.000989935i
\(709\) 12.7038 10.6597i 0.477100 0.400334i −0.372276 0.928122i \(-0.621423\pi\)
0.849377 + 0.527787i \(0.176978\pi\)
\(710\) 19.5623 + 33.8829i 0.734160 + 1.27160i
\(711\) −19.1459 + 33.1617i −0.718027 + 1.24366i
\(712\) 3.01465 + 17.0969i 0.112979 + 0.640735i
\(713\) 8.27477 + 46.9285i 0.309892 + 1.75749i
\(714\) −0.708204 + 1.22665i −0.0265039 + 0.0459060i
\(715\) 2.61803 + 4.53457i 0.0979089 + 0.169583i
\(716\) −5.79306 + 4.86096i −0.216497 + 0.181662i
\(717\) −0.117097 + 0.0426197i −0.00437306 + 0.00159166i
\(718\) 10.6955 + 3.89286i 0.399154 + 0.145280i
\(719\) 36.0305 + 30.2332i 1.34371 + 1.12751i 0.980656 + 0.195738i \(0.0627103\pi\)
0.363054 + 0.931768i \(0.381734\pi\)
\(720\) 7.78514 44.1517i 0.290135 1.64544i
\(721\) −42.9787 −1.60061
\(722\) 0 0
\(723\) 1.21478 0.0451782
\(724\) −1.28785 + 7.30374i −0.0478624 + 0.271441i
\(725\) 15.1664 + 12.7261i 0.563267 + 0.472637i
\(726\) 4.86793 + 1.77178i 0.180666 + 0.0657569i
\(727\) 15.0998 5.49588i 0.560021 0.203831i −0.0464723 0.998920i \(-0.514798\pi\)
0.606493 + 0.795089i \(0.292576\pi\)
\(728\) 5.13878 4.31195i 0.190456 0.159812i
\(729\) 9.71885 + 16.8335i 0.359957 + 0.623464i
\(730\) −7.09017 + 12.2805i −0.262419 + 0.454523i
\(731\) −0.0193542 0.109763i −0.000715840 0.00405973i
\(732\) 0.419605 + 2.37970i 0.0155090 + 0.0879561i
\(733\) 26.4787 45.8625i 0.978014 1.69397i 0.308405 0.951255i \(-0.400205\pi\)
0.669609 0.742714i \(-0.266462\pi\)
\(734\) −12.8992 22.3420i −0.476118 0.824660i
\(735\) −1.89377 + 1.58906i −0.0698526 + 0.0586133i
\(736\) −17.1039 + 6.22532i −0.630459 + 0.229468i
\(737\) 10.6432 + 3.87380i 0.392047 + 0.142693i
\(738\) 10.6129 + 8.90525i 0.390665 + 0.327807i
\(739\) −4.34120 + 24.6202i −0.159694 + 0.905668i 0.794674 + 0.607036i \(0.207642\pi\)
−0.954368 + 0.298633i \(0.903470\pi\)
\(740\) −17.7082 −0.650967
\(741\) 0 0
\(742\) −30.7082 −1.12733
\(743\) 0.583576 3.30962i 0.0214093 0.121418i −0.972230 0.234027i \(-0.924810\pi\)
0.993639 + 0.112609i \(0.0359207\pi\)
\(744\) −5.79306 4.86096i −0.212384 0.178211i
\(745\) 5.80762 + 2.11380i 0.212775 + 0.0774437i
\(746\) 8.32013 3.02828i 0.304622 0.110873i
\(747\) −18.5232 + 15.5428i −0.677729 + 0.568682i
\(748\) 0.381966 + 0.661585i 0.0139661 + 0.0241899i
\(749\) 24.6246 42.6511i 0.899764 1.55844i
\(750\) 0.163971 + 0.929926i 0.00598738 + 0.0339561i
\(751\) 2.97735 + 16.8854i 0.108645 + 0.616157i 0.989702 + 0.143146i \(0.0457219\pi\)
−0.881056 + 0.473011i \(0.843167\pi\)
\(752\) 7.28115 12.6113i 0.265516 0.459888i
\(753\) −4.84346 8.38912i −0.176505 0.305716i
\(754\) −4.48450 + 3.76294i −0.163316 + 0.137038i
\(755\) −64.1333 + 23.3426i −2.33405 + 0.849525i
\(756\) −3.89587 1.41798i −0.141691 0.0515715i
\(757\) 20.4861 + 17.1898i 0.744578 + 0.624775i 0.934063 0.357108i \(-0.116237\pi\)
−0.189485 + 0.981884i \(0.560682\pi\)
\(758\) −4.24954 + 24.1003i −0.154350 + 0.875364i
\(759\) 3.32624 0.120735
\(760\) 0 0
\(761\) 4.88854 0.177210 0.0886048 0.996067i \(-0.471759\pi\)
0.0886048 + 0.996067i \(0.471759\pi\)
\(762\) −0.618588 + 3.50819i −0.0224091 + 0.127088i
\(763\) 7.56499 + 6.34778i 0.273871 + 0.229805i
\(764\) −8.26777 3.00922i −0.299117 0.108870i
\(765\) 6.63022 2.41320i 0.239716 0.0872495i
\(766\) 0.473442 0.397265i 0.0171061 0.0143538i
\(767\) 0.163119 + 0.282530i 0.00588988 + 0.0102016i
\(768\) 2.59017 4.48631i 0.0934647 0.161886i
\(769\) 6.36094 + 36.0747i 0.229381 + 1.30089i 0.854130 + 0.520060i \(0.174090\pi\)
−0.624748 + 0.780826i \(0.714798\pi\)
\(770\) 4.41351 + 25.0303i 0.159052 + 0.902029i
\(771\) −3.88854 + 6.73516i −0.140042 + 0.242561i
\(772\) 1.56231 + 2.70599i 0.0562286 + 0.0973908i
\(773\) 27.5186 23.0909i 0.989775 0.830520i 0.00424018 0.999991i \(-0.498650\pi\)
0.985535 + 0.169471i \(0.0542059\pi\)
\(774\) 0.633129 0.230440i 0.0227574 0.00828300i
\(775\) −45.5289 16.5712i −1.63545 0.595254i
\(776\) −23.7311 19.9127i −0.851896 0.714825i
\(777\) 1.76182 9.99176i 0.0632048 0.358452i
\(778\) −15.0000 −0.537776
\(779\) 0 0
\(780\) −0.763932 −0.0273532
\(781\) −2.09944 + 11.9065i −0.0751237 + 0.426048i
\(782\) −5.09609 4.27613i −0.182236 0.152914i
\(783\) −7.60227 2.76700i −0.271683 0.0988846i
\(784\) 9.12273 3.32040i 0.325812 0.118586i
\(785\) −44.2598 + 37.1384i −1.57970 + 1.32553i
\(786\) −4.66312 8.07676i −0.166328 0.288088i
\(787\) 19.0000 32.9090i 0.677277 1.17308i −0.298521 0.954403i \(-0.596493\pi\)
0.975798 0.218675i \(-0.0701734\pi\)
\(788\) 0.321961 + 1.82593i 0.0114694 + 0.0650462i
\(789\) 0.991219 + 5.62148i 0.0352883 + 0.200130i
\(790\) −35.1246 + 60.8376i −1.24968 + 2.16451i
\(791\) 10.1459 + 17.5732i 0.360747 + 0.624831i
\(792\) 7.91036 6.63758i 0.281082 0.235856i
\(793\) 9.61876 3.50094i 0.341572 0.124322i
\(794\) −17.4429 6.34868i −0.619024 0.225306i
\(795\) −5.99021 5.02638i −0.212451 0.178267i
\(796\) −1.43986 + 8.16583i −0.0510343 + 0.289430i
\(797\) 20.2918 0.718772 0.359386 0.933189i \(-0.382986\pi\)
0.359386 + 0.933189i \(0.382986\pi\)
\(798\) 0 0
\(799\) 2.29180 0.0810779
\(800\) 3.21363 18.2254i 0.113619 0.644366i
\(801\) −16.9748 14.2436i −0.599776 0.503272i
\(802\) 54.5669 + 19.8607i 1.92682 + 0.701307i
\(803\) −4.11770 + 1.49872i −0.145311 + 0.0528887i
\(804\) −1.26587 + 1.06219i −0.0446438 + 0.0374606i
\(805\) −26.1246 45.2492i −0.920772 1.59482i
\(806\) 7.16312 12.4069i 0.252310 0.437014i
\(807\) 2.01147 + 11.4076i 0.0708071 + 0.401567i
\(808\) −3.56463 20.2160i −0.125403 0.711196i
\(809\) 12.3992 21.4760i 0.435932 0.755057i −0.561439 0.827518i \(-0.689752\pi\)
0.997371 + 0.0724614i \(0.0230854\pi\)
\(810\) 20.1803 + 34.9534i 0.709065 + 1.22814i
\(811\) −17.6027 + 14.7704i −0.618115 + 0.518660i −0.897210 0.441603i \(-0.854410\pi\)
0.279095 + 0.960263i \(0.409965\pi\)
\(812\) −6.30365 + 2.29434i −0.221215 + 0.0805156i
\(813\) 0.411298 + 0.149700i 0.0144248 + 0.00525022i
\(814\) −17.7572 14.9000i −0.622389 0.522246i
\(815\) 0.991219 5.62148i 0.0347209 0.196912i
\(816\) 1.41641 0.0495842
\(817\) 0 0
\(818\) −13.4164 −0.469094
\(819\) −1.48683 + 8.43223i −0.0519540 + 0.294646i
\(820\) 4.59627 + 3.85673i 0.160509 + 0.134683i
\(821\) −48.9087 17.8013i −1.70693 0.621271i −0.710343 0.703856i \(-0.751460\pi\)
−0.996584 + 0.0825852i \(0.973682\pi\)
\(822\) −4.33953 + 1.57946i −0.151359 + 0.0550900i
\(823\) −19.6082 + 16.4533i −0.683501 + 0.573525i −0.917027 0.398825i \(-0.869418\pi\)
0.233526 + 0.972350i \(0.424973\pi\)
\(824\) 16.0172 + 27.7426i 0.557986 + 0.966461i
\(825\) −1.69098 + 2.92887i −0.0588725 + 0.101970i
\(826\) 0.274988 + 1.55953i 0.00956805 + 0.0542631i
\(827\) −5.66037 32.1015i −0.196830 1.11628i −0.909788 0.415073i \(-0.863756\pi\)
0.712958 0.701207i \(-0.247355\pi\)
\(828\) 4.74671 8.22154i 0.164960 0.285718i
\(829\) 2.33688 + 4.04760i 0.0811632 + 0.140579i 0.903750 0.428061i \(-0.140803\pi\)
−0.822587 + 0.568640i \(0.807470\pi\)
\(830\) −33.9823 + 28.5145i −1.17954 + 0.989753i
\(831\) 4.09770 1.49144i 0.142148 0.0517375i
\(832\) −3.98060 1.44882i −0.138003 0.0502288i
\(833\) 1.17041 + 0.982092i 0.0405524 + 0.0340275i
\(834\) 1.58817 9.00695i 0.0549938 0.311885i
\(835\) −65.4853 −2.26621
\(836\) 0 0
\(837\) 19.7984 0.684332
\(838\) 2.51306 14.2523i 0.0868122 0.492337i
\(839\) −11.6451 9.77142i −0.402034 0.337347i 0.419245 0.907873i \(-0.362295\pi\)
−0.821279 + 0.570526i \(0.806739\pi\)
\(840\) 7.79174 + 2.83596i 0.268841 + 0.0978500i
\(841\) 14.9503 5.44148i 0.515529 0.187637i
\(842\) −34.0513 + 28.5725i −1.17349 + 0.984672i
\(843\) 5.63525 + 9.76055i 0.194088 + 0.336171i
\(844\) −1.19098 + 2.06284i −0.0409953 + 0.0710060i
\(845\) −6.74325 38.2429i −0.231975 1.31559i
\(846\) 2.40574 + 13.6436i 0.0827110 + 0.469078i
\(847\) 12.5729 21.7770i 0.432012 0.748266i
\(848\) 15.3541 + 26.5941i 0.527262 + 0.913245i
\(849\) −7.61775 + 6.39205i −0.261441 + 0.219375i
\(850\) 6.35602 2.31340i 0.218010 0.0793490i
\(851\) 44.7787 + 16.2981i 1.53499 + 0.558692i
\(852\) −1.35125 1.13383i −0.0462931 0.0388445i
\(853\) 5.33242 30.2417i 0.182579 1.03546i −0.746448 0.665443i \(-0.768242\pi\)
0.929027 0.370012i \(-0.120646\pi\)
\(854\) 49.6869 1.70025
\(855\) 0 0
\(856\) −36.7082 −1.25466
\(857\) 1.84380 10.4567i 0.0629831 0.357195i −0.936986 0.349366i \(-0.886397\pi\)
0.999969 0.00782864i \(-0.00249196\pi\)
\(858\) −0.766044 0.642788i −0.0261523 0.0219444i
\(859\) 45.6136 + 16.6020i 1.55632 + 0.566453i 0.969889 0.243548i \(-0.0783113\pi\)
0.586428 + 0.810001i \(0.300534\pi\)
\(860\) 0.274199 0.0998001i 0.00935010 0.00340316i
\(861\) −2.63343 + 2.20971i −0.0897469 + 0.0753066i
\(862\) −22.3713 38.7483i −0.761970 1.31977i
\(863\) −13.5279 + 23.4309i −0.460494 + 0.797599i −0.998986 0.0450321i \(-0.985661\pi\)
0.538492 + 0.842631i \(0.318994\pi\)
\(864\) 1.31318 + 7.44742i 0.0446753 + 0.253366i
\(865\) 0.265311 + 1.50465i 0.00902084 + 0.0511597i
\(866\) 2.78115 4.81710i 0.0945074 0.163692i
\(867\) −3.13525 5.43042i −0.106479 0.184427i
\(868\) 12.5757 10.5523i 0.426847 0.358167i
\(869\) −20.3990 + 7.42464i −0.691990 + 0.251864i
\(870\) −6.79968 2.47488i −0.230531 0.0839063i
\(871\) 5.36231 + 4.49951i 0.181695 + 0.152460i
\(872\) 1.27817 7.24885i 0.0432843 0.245477i
\(873\) 39.5410 1.33826
\(874\) 0 0
\(875\) 4.58359 0.154954
\(876\) 0.111017 0.629608i 0.00375091 0.0212725i
\(877\) −9.05438 7.59753i −0.305745 0.256550i 0.476986 0.878911i \(-0.341729\pi\)
−0.782731 + 0.622361i \(0.786174\pi\)
\(878\) 52.6028 + 19.1458i 1.77526 + 0.646141i
\(879\) 3.64167 1.32546i 0.122831 0.0447067i
\(880\) 19.4701 16.3374i 0.656337 0.550732i
\(881\) −16.2254 28.1033i −0.546648 0.946823i −0.998501 0.0547303i \(-0.982570\pi\)
0.451853 0.892093i \(-0.350763\pi\)
\(882\) −4.61803 + 7.99867i −0.155497 + 0.269329i
\(883\) −8.84268 50.1494i −0.297580 1.68766i −0.656527 0.754302i \(-0.727975\pi\)
0.358947 0.933358i \(-0.383136\pi\)
\(884\) 0.0819855 + 0.464963i 0.00275747 + 0.0156384i
\(885\) −0.201626 + 0.349227i −0.00677759 + 0.0117391i
\(886\) −6.13525 10.6266i −0.206118 0.357007i
\(887\) −20.9494 + 17.5786i −0.703413 + 0.590233i −0.922742 0.385418i \(-0.874057\pi\)
0.219330 + 0.975651i \(0.429613\pi\)
\(888\) −7.10624 + 2.58646i −0.238470 + 0.0867959i
\(889\) 16.2490 + 5.91414i 0.544973 + 0.198354i
\(890\) −31.1416 26.1309i −1.04387 0.875910i
\(891\) −2.16576 + 12.2827i −0.0725558 + 0.411484i
\(892\) 7.20163 0.241128
\(893\) 0 0
\(894\) −1.18034 −0.0394765
\(895\) −6.87590 + 38.9952i −0.229836 + 1.30347i
\(896\) −31.2961 26.2605i −1.04553 0.877302i
\(897\) 1.93175 + 0.703100i 0.0644993 + 0.0234758i
\(898\) −4.39190 + 1.59852i −0.146560 + 0.0533433i
\(899\) 24.5398 20.5913i 0.818448 0.686760i
\(900\) 4.82624 + 8.35929i 0.160875 + 0.278643i
\(901\) −2.41641 + 4.18534i −0.0805022 + 0.139434i
\(902\) 1.36385 + 7.73478i 0.0454113 + 0.257540i
\(903\) 0.0290312 + 0.164644i 0.000966099 + 0.00547902i
\(904\) 7.56231 13.0983i 0.251519 0.435643i
\(905\) 19.4164 + 33.6302i 0.645423 + 1.11791i
\(906\) 9.98496 8.37838i 0.331728 0.278353i
\(907\) −24.8757 + 9.05400i −0.825983 + 0.300633i −0.720209 0.693757i \(-0.755954\pi\)
−0.105774 + 0.994390i \(0.533732\pi\)
\(908\) 9.53403 + 3.47010i 0.316398 + 0.115159i
\(909\) 20.0716 + 16.8421i 0.665733 + 0.558617i
\(910\) −2.72770 + 15.4696i −0.0904224 + 0.512811i
\(911\) −3.38197 −0.112050 −0.0560248 0.998429i \(-0.517843\pi\)
−0.0560248 + 0.998429i \(0.517843\pi\)
\(912\) 0 0
\(913\) −13.7082 −0.453675
\(914\) −5.53739 + 31.4041i −0.183160 + 1.03875i
\(915\) 9.69236 + 8.13285i 0.320419 + 0.268864i
\(916\) 7.90884 + 2.87858i 0.261315 + 0.0951110i
\(917\) −42.5404 + 15.4834i −1.40481 + 0.511308i
\(918\) −2.11729 + 1.77662i −0.0698811 + 0.0586372i
\(919\) −11.6459 20.1713i −0.384163 0.665389i 0.607490 0.794327i \(-0.292177\pi\)
−0.991653 + 0.128938i \(0.958843\pi\)
\(920\) −19.4721 + 33.7267i −0.641977 + 1.11194i
\(921\) −1.14921 6.51749i −0.0378677 0.214759i
\(922\) −5.88468 33.3737i −0.193802 1.09910i
\(923\) −3.73607 + 6.47106i −0.122974 + 0.212998i
\(924\) −0.572949 0.992377i −0.0188486 0.0326468i
\(925\) −37.1155 + 31.1436i −1.22035 + 1.02400i
\(926\) 42.9840 15.6449i 1.41254 0.514124i
\(927\) −38.4227 13.9847i −1.26197 0.459318i
\(928\) 9.37337 + 7.86519i 0.307696 + 0.258188i
\(929\) 2.84470 16.1331i 0.0933315 0.529309i −0.901914 0.431915i \(-0.857838\pi\)
0.995246 0.0973944i \(-0.0310508\pi\)
\(930\) 17.7082 0.580675
\(931\) 0 0
\(932\) 2.79837 0.0916638
\(933\) −0.839210 + 4.75939i −0.0274745 + 0.155816i
\(934\) 19.7627 + 16.5829i 0.646655 + 0.542608i
\(935\) 3.75877 + 1.36808i 0.122925 + 0.0447410i
\(936\) 5.99709 2.18276i 0.196021 0.0713458i
\(937\) 31.0725 26.0729i 1.01510 0.851766i 0.0260920 0.999660i \(-0.491694\pi\)
0.989003 + 0.147893i \(0.0472493\pi\)
\(938\) 16.9894 + 29.4264i 0.554722 + 0.960807i
\(939\) −2.16312 + 3.74663i −0.0705907 + 0.122267i
\(940\) 1.04189 + 5.90885i 0.0339827 + 0.192725i
\(941\) 1.85576 + 10.5246i 0.0604962 + 0.343091i 1.00000 0.000552015i \(0.000175712\pi\)
−0.939504 + 0.342539i \(0.888713\pi\)
\(942\) 5.51722 9.55611i 0.179761 0.311355i
\(943\) −8.07295 13.9828i −0.262891 0.455341i
\(944\) 1.21310 1.01791i 0.0394831 0.0331303i
\(945\) −20.3990 + 7.42464i −0.663581 + 0.241524i
\(946\) 0.358931 + 0.130640i 0.0116698 + 0.00424748i
\(947\) −25.0132 20.9886i −0.812821 0.682038i 0.138458 0.990368i \(-0.455785\pi\)
−0.951279 + 0.308330i \(0.900230\pi\)
\(948\) 0.549976 3.11907i 0.0178624 0.101303i
\(949\) −2.70820 −0.0879120
\(950\) 0 0
\(951\) 6.87539 0.222950
\(952\) 0.889879 5.04676i 0.0288412 0.163566i
\(953\) −13.2463 11.1150i −0.429089 0.360049i 0.402519 0.915412i \(-0.368135\pi\)
−0.831608 + 0.555363i \(0.812579\pi\)
\(954\) −27.4529 9.99204i −0.888821 0.323504i
\(955\) −43.2906 + 15.7565i −1.40085 + 0.509868i
\(956\) −0.154455 + 0.129603i −0.00499542 + 0.00419165i
\(957\) −1.11803 1.93649i −0.0361409 0.0625979i
\(958\) 18.6803 32.3553i 0.603534 1.04535i
\(959\) 3.89257 + 22.0759i 0.125698 + 0.712866i
\(960\) −0.909234 5.15652i −0.0293454 0.166426i
\(961\) −23.6976 + 41.0454i −0.764437 + 1.32404i
\(962\) −7.16312 12.4069i −0.230948 0.400014i
\(963\) 35.8923 30.1172i 1.15661 0.970514i
\(964\) 1.84702 0.672260i 0.0594885 0.0216521i
\(965\) 15.3740 + 5.59568i 0.494907 + 0.180131i
\(966\) 7.64414 + 6.41419i 0.245946 + 0.206373i
\(967\) 1.13584 6.44165i 0.0365260 0.207149i −0.961083 0.276260i \(-0.910905\pi\)
0.997609 + 0.0691104i \(0.0220161\pi\)
\(968\) −18.7426 −0.602411
\(969\) 0 0
\(970\) 72.5410 2.32915
\(971\) −4.08187 + 23.1495i −0.130994 + 0.742902i 0.846573 + 0.532273i \(0.178662\pi\)
−0.977566 + 0.210628i \(0.932449\pi\)
\(972\) −4.56988 3.83459i −0.146579 0.122994i
\(973\) −41.7178 15.1840i −1.33741 0.486778i
\(974\) −6.35602 + 2.31340i −0.203660 + 0.0741261i
\(975\) −1.60116 + 1.34354i −0.0512783 + 0.0430276i
\(976\) −24.8435 43.0301i −0.795220 1.37736i
\(977\) 5.31966 9.21392i 0.170191 0.294779i −0.768296 0.640095i \(-0.778895\pi\)
0.938487 + 0.345316i \(0.112228\pi\)
\(978\) 0.189306 + 1.07361i 0.00605334 + 0.0343302i
\(979\) −2.18142 12.3715i −0.0697185 0.395393i
\(980\) −2.00000 + 3.46410i −0.0638877 + 0.110657i
\(981\) 4.69756 + 8.13641i 0.149982 + 0.259776i
\(982\) 26.2954 22.0645i 0.839121 0.704106i
\(983\) 30.6509 11.1560i 0.977613 0.355822i 0.196701 0.980463i \(-0.436977\pi\)
0.780912 + 0.624642i \(0.214755\pi\)
\(984\) 2.40778 + 0.876360i 0.0767572 + 0.0279373i
\(985\) 7.43692 + 6.24031i 0.236960 + 0.198833i
\(986\) −0.776578 + 4.40419i −0.0247313 + 0.140258i
\(987\) −3.43769 −0.109423
\(988\) 0 0
\(989\) −0.785218 −0.0249685
\(990\) −4.19887 + 23.8130i −0.133449 + 0.756826i
\(991\) −5.70768 4.78931i −0.181310 0.152138i 0.547615 0.836730i \(-0.315536\pi\)
−0.728926 + 0.684593i \(0.759980\pi\)
\(992\) −28.1384 10.2415i −0.893395 0.325169i
\(993\) −3.92823 + 1.42976i −0.124659 + 0.0453721i
\(994\) −27.7848 + 23.3142i −0.881281 + 0.739483i
\(995\) 21.7082 + 37.5997i 0.688196 + 1.19199i
\(996\) 1.00000 1.73205i 0.0316862 0.0548821i
\(997\) 6.89526 + 39.1049i 0.218375 + 1.23847i 0.874953 + 0.484208i \(0.160892\pi\)
−0.656578 + 0.754258i \(0.727997\pi\)
\(998\) −7.05923 40.0349i −0.223456 1.26728i
\(999\) 9.89919 17.1459i 0.313196 0.542472i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 361.2.e.i.245.1 12
19.2 odd 18 361.2.c.d.68.1 4
19.3 odd 18 361.2.a.f.1.2 yes 2
19.4 even 9 inner 361.2.e.i.234.1 12
19.5 even 9 361.2.c.g.292.2 4
19.6 even 9 inner 361.2.e.i.99.2 12
19.7 even 3 inner 361.2.e.i.54.1 12
19.8 odd 6 361.2.e.j.62.1 12
19.9 even 9 inner 361.2.e.i.28.1 12
19.10 odd 18 361.2.e.j.28.2 12
19.11 even 3 inner 361.2.e.i.62.2 12
19.12 odd 6 361.2.e.j.54.2 12
19.13 odd 18 361.2.e.j.99.1 12
19.14 odd 18 361.2.c.d.292.1 4
19.15 odd 18 361.2.e.j.234.2 12
19.16 even 9 361.2.a.c.1.1 2
19.17 even 9 361.2.c.g.68.2 4
19.18 odd 2 361.2.e.j.245.2 12
57.35 odd 18 3249.2.a.o.1.2 2
57.41 even 18 3249.2.a.i.1.1 2
76.3 even 18 5776.2.a.s.1.2 2
76.35 odd 18 5776.2.a.bg.1.1 2
95.54 even 18 9025.2.a.s.1.2 2
95.79 odd 18 9025.2.a.n.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
361.2.a.c.1.1 2 19.16 even 9
361.2.a.f.1.2 yes 2 19.3 odd 18
361.2.c.d.68.1 4 19.2 odd 18
361.2.c.d.292.1 4 19.14 odd 18
361.2.c.g.68.2 4 19.17 even 9
361.2.c.g.292.2 4 19.5 even 9
361.2.e.i.28.1 12 19.9 even 9 inner
361.2.e.i.54.1 12 19.7 even 3 inner
361.2.e.i.62.2 12 19.11 even 3 inner
361.2.e.i.99.2 12 19.6 even 9 inner
361.2.e.i.234.1 12 19.4 even 9 inner
361.2.e.i.245.1 12 1.1 even 1 trivial
361.2.e.j.28.2 12 19.10 odd 18
361.2.e.j.54.2 12 19.12 odd 6
361.2.e.j.62.1 12 19.8 odd 6
361.2.e.j.99.1 12 19.13 odd 18
361.2.e.j.234.2 12 19.15 odd 18
361.2.e.j.245.2 12 19.18 odd 2
3249.2.a.i.1.1 2 57.41 even 18
3249.2.a.o.1.2 2 57.35 odd 18
5776.2.a.s.1.2 2 76.3 even 18
5776.2.a.bg.1.1 2 76.35 odd 18
9025.2.a.n.1.1 2 95.79 odd 18
9025.2.a.s.1.2 2 95.54 even 18