Properties

Label 361.2.c.a.68.1
Level $361$
Weight $2$
Character 361.68
Analytic conductor $2.883$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [361,2,Mod(68,361)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("361.68"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(361, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 361 = 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 361.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.88259951297\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 19)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 68.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 361.68
Dual form 361.2.c.a.292.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 + 1.73205i) q^{3} +(1.00000 + 1.73205i) q^{4} +(-1.50000 + 2.59808i) q^{5} -1.00000 q^{7} +(-0.500000 - 0.866025i) q^{9} +3.00000 q^{11} -4.00000 q^{12} +(-2.00000 - 3.46410i) q^{13} +(-3.00000 - 5.19615i) q^{15} +(-2.00000 + 3.46410i) q^{16} +(1.50000 - 2.59808i) q^{17} -6.00000 q^{20} +(1.00000 - 1.73205i) q^{21} +(-2.00000 - 3.46410i) q^{25} -4.00000 q^{27} +(-1.00000 - 1.73205i) q^{28} +(3.00000 + 5.19615i) q^{29} +4.00000 q^{31} +(-3.00000 + 5.19615i) q^{33} +(1.50000 - 2.59808i) q^{35} +(1.00000 - 1.73205i) q^{36} -2.00000 q^{37} +8.00000 q^{39} +(-3.00000 + 5.19615i) q^{41} +(0.500000 - 0.866025i) q^{43} +(3.00000 + 5.19615i) q^{44} +3.00000 q^{45} +(1.50000 + 2.59808i) q^{47} +(-4.00000 - 6.92820i) q^{48} -6.00000 q^{49} +(3.00000 + 5.19615i) q^{51} +(4.00000 - 6.92820i) q^{52} +(6.00000 + 10.3923i) q^{53} +(-4.50000 + 7.79423i) q^{55} +(-3.00000 + 5.19615i) q^{59} +(6.00000 - 10.3923i) q^{60} +(0.500000 + 0.866025i) q^{61} +(0.500000 + 0.866025i) q^{63} -8.00000 q^{64} +12.0000 q^{65} +(-2.00000 - 3.46410i) q^{67} +6.00000 q^{68} +(3.00000 - 5.19615i) q^{71} +(3.50000 - 6.06218i) q^{73} +8.00000 q^{75} -3.00000 q^{77} +(4.00000 - 6.92820i) q^{79} +(-6.00000 - 10.3923i) q^{80} +(5.50000 - 9.52628i) q^{81} +12.0000 q^{83} +4.00000 q^{84} +(4.50000 + 7.79423i) q^{85} -12.0000 q^{87} +(6.00000 + 10.3923i) q^{89} +(2.00000 + 3.46410i) q^{91} +(-4.00000 + 6.92820i) q^{93} +(4.00000 - 6.92820i) q^{97} +(-1.50000 - 2.59808i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} + 2 q^{4} - 3 q^{5} - 2 q^{7} - q^{9} + 6 q^{11} - 8 q^{12} - 4 q^{13} - 6 q^{15} - 4 q^{16} + 3 q^{17} - 12 q^{20} + 2 q^{21} - 4 q^{25} - 8 q^{27} - 2 q^{28} + 6 q^{29} + 8 q^{31} - 6 q^{33}+ \cdots - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/361\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(3\) −1.00000 + 1.73205i −0.577350 + 1.00000i 0.418432 + 0.908248i \(0.362580\pi\)
−0.995782 + 0.0917517i \(0.970753\pi\)
\(4\) 1.00000 + 1.73205i 0.500000 + 0.866025i
\(5\) −1.50000 + 2.59808i −0.670820 + 1.16190i 0.306851 + 0.951757i \(0.400725\pi\)
−0.977672 + 0.210138i \(0.932609\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964 −0.188982 0.981981i \(-0.560519\pi\)
−0.188982 + 0.981981i \(0.560519\pi\)
\(8\) 0 0
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 0 0
\(11\) 3.00000 0.904534 0.452267 0.891883i \(-0.350615\pi\)
0.452267 + 0.891883i \(0.350615\pi\)
\(12\) −4.00000 −1.15470
\(13\) −2.00000 3.46410i −0.554700 0.960769i −0.997927 0.0643593i \(-0.979500\pi\)
0.443227 0.896410i \(-0.353834\pi\)
\(14\) 0 0
\(15\) −3.00000 5.19615i −0.774597 1.34164i
\(16\) −2.00000 + 3.46410i −0.500000 + 0.866025i
\(17\) 1.50000 2.59808i 0.363803 0.630126i −0.624780 0.780801i \(-0.714811\pi\)
0.988583 + 0.150675i \(0.0481447\pi\)
\(18\) 0 0
\(19\) 0 0
\(20\) −6.00000 −1.34164
\(21\) 1.00000 1.73205i 0.218218 0.377964i
\(22\) 0 0
\(23\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(24\) 0 0
\(25\) −2.00000 3.46410i −0.400000 0.692820i
\(26\) 0 0
\(27\) −4.00000 −0.769800
\(28\) −1.00000 1.73205i −0.188982 0.327327i
\(29\) 3.00000 + 5.19615i 0.557086 + 0.964901i 0.997738 + 0.0672232i \(0.0214140\pi\)
−0.440652 + 0.897678i \(0.645253\pi\)
\(30\) 0 0
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) 0 0
\(33\) −3.00000 + 5.19615i −0.522233 + 0.904534i
\(34\) 0 0
\(35\) 1.50000 2.59808i 0.253546 0.439155i
\(36\) 1.00000 1.73205i 0.166667 0.288675i
\(37\) −2.00000 −0.328798 −0.164399 0.986394i \(-0.552568\pi\)
−0.164399 + 0.986394i \(0.552568\pi\)
\(38\) 0 0
\(39\) 8.00000 1.28103
\(40\) 0 0
\(41\) −3.00000 + 5.19615i −0.468521 + 0.811503i −0.999353 0.0359748i \(-0.988546\pi\)
0.530831 + 0.847477i \(0.321880\pi\)
\(42\) 0 0
\(43\) 0.500000 0.866025i 0.0762493 0.132068i −0.825380 0.564578i \(-0.809039\pi\)
0.901629 + 0.432511i \(0.142372\pi\)
\(44\) 3.00000 + 5.19615i 0.452267 + 0.783349i
\(45\) 3.00000 0.447214
\(46\) 0 0
\(47\) 1.50000 + 2.59808i 0.218797 + 0.378968i 0.954441 0.298401i \(-0.0964533\pi\)
−0.735643 + 0.677369i \(0.763120\pi\)
\(48\) −4.00000 6.92820i −0.577350 1.00000i
\(49\) −6.00000 −0.857143
\(50\) 0 0
\(51\) 3.00000 + 5.19615i 0.420084 + 0.727607i
\(52\) 4.00000 6.92820i 0.554700 0.960769i
\(53\) 6.00000 + 10.3923i 0.824163 + 1.42749i 0.902557 + 0.430570i \(0.141688\pi\)
−0.0783936 + 0.996922i \(0.524979\pi\)
\(54\) 0 0
\(55\) −4.50000 + 7.79423i −0.606780 + 1.05097i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −3.00000 + 5.19615i −0.390567 + 0.676481i −0.992524 0.122047i \(-0.961054\pi\)
0.601958 + 0.798528i \(0.294388\pi\)
\(60\) 6.00000 10.3923i 0.774597 1.34164i
\(61\) 0.500000 + 0.866025i 0.0640184 + 0.110883i 0.896258 0.443533i \(-0.146275\pi\)
−0.832240 + 0.554416i \(0.812942\pi\)
\(62\) 0 0
\(63\) 0.500000 + 0.866025i 0.0629941 + 0.109109i
\(64\) −8.00000 −1.00000
\(65\) 12.0000 1.48842
\(66\) 0 0
\(67\) −2.00000 3.46410i −0.244339 0.423207i 0.717607 0.696449i \(-0.245238\pi\)
−0.961946 + 0.273241i \(0.911904\pi\)
\(68\) 6.00000 0.727607
\(69\) 0 0
\(70\) 0 0
\(71\) 3.00000 5.19615i 0.356034 0.616670i −0.631260 0.775571i \(-0.717462\pi\)
0.987294 + 0.158901i \(0.0507952\pi\)
\(72\) 0 0
\(73\) 3.50000 6.06218i 0.409644 0.709524i −0.585206 0.810885i \(-0.698986\pi\)
0.994850 + 0.101361i \(0.0323196\pi\)
\(74\) 0 0
\(75\) 8.00000 0.923760
\(76\) 0 0
\(77\) −3.00000 −0.341882
\(78\) 0 0
\(79\) 4.00000 6.92820i 0.450035 0.779484i −0.548352 0.836247i \(-0.684745\pi\)
0.998388 + 0.0567635i \(0.0180781\pi\)
\(80\) −6.00000 10.3923i −0.670820 1.16190i
\(81\) 5.50000 9.52628i 0.611111 1.05848i
\(82\) 0 0
\(83\) 12.0000 1.31717 0.658586 0.752506i \(-0.271155\pi\)
0.658586 + 0.752506i \(0.271155\pi\)
\(84\) 4.00000 0.436436
\(85\) 4.50000 + 7.79423i 0.488094 + 0.845403i
\(86\) 0 0
\(87\) −12.0000 −1.28654
\(88\) 0 0
\(89\) 6.00000 + 10.3923i 0.635999 + 1.10158i 0.986303 + 0.164946i \(0.0527450\pi\)
−0.350304 + 0.936636i \(0.613922\pi\)
\(90\) 0 0
\(91\) 2.00000 + 3.46410i 0.209657 + 0.363137i
\(92\) 0 0
\(93\) −4.00000 + 6.92820i −0.414781 + 0.718421i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 4.00000 6.92820i 0.406138 0.703452i −0.588315 0.808632i \(-0.700208\pi\)
0.994453 + 0.105180i \(0.0335417\pi\)
\(98\) 0 0
\(99\) −1.50000 2.59808i −0.150756 0.261116i
\(100\) 4.00000 6.92820i 0.400000 0.692820i
\(101\) −3.00000 5.19615i −0.298511 0.517036i 0.677284 0.735721i \(-0.263157\pi\)
−0.975796 + 0.218685i \(0.929823\pi\)
\(102\) 0 0
\(103\) −14.0000 −1.37946 −0.689730 0.724066i \(-0.742271\pi\)
−0.689730 + 0.724066i \(0.742271\pi\)
\(104\) 0 0
\(105\) 3.00000 + 5.19615i 0.292770 + 0.507093i
\(106\) 0 0
\(107\) 18.0000 1.74013 0.870063 0.492941i \(-0.164078\pi\)
0.870063 + 0.492941i \(0.164078\pi\)
\(108\) −4.00000 6.92820i −0.384900 0.666667i
\(109\) −8.00000 + 13.8564i −0.766261 + 1.32720i 0.173316 + 0.984866i \(0.444552\pi\)
−0.939577 + 0.342337i \(0.888782\pi\)
\(110\) 0 0
\(111\) 2.00000 3.46410i 0.189832 0.328798i
\(112\) 2.00000 3.46410i 0.188982 0.327327i
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −6.00000 + 10.3923i −0.557086 + 0.964901i
\(117\) −2.00000 + 3.46410i −0.184900 + 0.320256i
\(118\) 0 0
\(119\) −1.50000 + 2.59808i −0.137505 + 0.238165i
\(120\) 0 0
\(121\) −2.00000 −0.181818
\(122\) 0 0
\(123\) −6.00000 10.3923i −0.541002 0.937043i
\(124\) 4.00000 + 6.92820i 0.359211 + 0.622171i
\(125\) −3.00000 −0.268328
\(126\) 0 0
\(127\) 1.00000 + 1.73205i 0.0887357 + 0.153695i 0.906977 0.421180i \(-0.138384\pi\)
−0.818241 + 0.574875i \(0.805051\pi\)
\(128\) 0 0
\(129\) 1.00000 + 1.73205i 0.0880451 + 0.152499i
\(130\) 0 0
\(131\) 7.50000 12.9904i 0.655278 1.13497i −0.326546 0.945181i \(-0.605885\pi\)
0.981824 0.189794i \(-0.0607819\pi\)
\(132\) −12.0000 −1.04447
\(133\) 0 0
\(134\) 0 0
\(135\) 6.00000 10.3923i 0.516398 0.894427i
\(136\) 0 0
\(137\) 1.50000 + 2.59808i 0.128154 + 0.221969i 0.922961 0.384893i \(-0.125762\pi\)
−0.794808 + 0.606861i \(0.792428\pi\)
\(138\) 0 0
\(139\) 6.50000 + 11.2583i 0.551323 + 0.954919i 0.998179 + 0.0603135i \(0.0192101\pi\)
−0.446857 + 0.894606i \(0.647457\pi\)
\(140\) 6.00000 0.507093
\(141\) −6.00000 −0.505291
\(142\) 0 0
\(143\) −6.00000 10.3923i −0.501745 0.869048i
\(144\) 4.00000 0.333333
\(145\) −18.0000 −1.49482
\(146\) 0 0
\(147\) 6.00000 10.3923i 0.494872 0.857143i
\(148\) −2.00000 3.46410i −0.164399 0.284747i
\(149\) −10.5000 + 18.1865i −0.860194 + 1.48990i 0.0115483 + 0.999933i \(0.496324\pi\)
−0.871742 + 0.489966i \(0.837009\pi\)
\(150\) 0 0
\(151\) 10.0000 0.813788 0.406894 0.913475i \(-0.366612\pi\)
0.406894 + 0.913475i \(0.366612\pi\)
\(152\) 0 0
\(153\) −3.00000 −0.242536
\(154\) 0 0
\(155\) −6.00000 + 10.3923i −0.481932 + 0.834730i
\(156\) 8.00000 + 13.8564i 0.640513 + 1.10940i
\(157\) −7.00000 + 12.1244i −0.558661 + 0.967629i 0.438948 + 0.898513i \(0.355351\pi\)
−0.997609 + 0.0691164i \(0.977982\pi\)
\(158\) 0 0
\(159\) −24.0000 −1.90332
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 20.0000 1.56652 0.783260 0.621694i \(-0.213555\pi\)
0.783260 + 0.621694i \(0.213555\pi\)
\(164\) −12.0000 −0.937043
\(165\) −9.00000 15.5885i −0.700649 1.21356i
\(166\) 0 0
\(167\) −9.00000 15.5885i −0.696441 1.20627i −0.969693 0.244328i \(-0.921432\pi\)
0.273252 0.961943i \(-0.411901\pi\)
\(168\) 0 0
\(169\) −1.50000 + 2.59808i −0.115385 + 0.199852i
\(170\) 0 0
\(171\) 0 0
\(172\) 2.00000 0.152499
\(173\) −9.00000 + 15.5885i −0.684257 + 1.18517i 0.289412 + 0.957205i \(0.406540\pi\)
−0.973670 + 0.227964i \(0.926793\pi\)
\(174\) 0 0
\(175\) 2.00000 + 3.46410i 0.151186 + 0.261861i
\(176\) −6.00000 + 10.3923i −0.452267 + 0.783349i
\(177\) −6.00000 10.3923i −0.450988 0.781133i
\(178\) 0 0
\(179\) 18.0000 1.34538 0.672692 0.739923i \(-0.265138\pi\)
0.672692 + 0.739923i \(0.265138\pi\)
\(180\) 3.00000 + 5.19615i 0.223607 + 0.387298i
\(181\) 1.00000 + 1.73205i 0.0743294 + 0.128742i 0.900794 0.434246i \(-0.142985\pi\)
−0.826465 + 0.562988i \(0.809652\pi\)
\(182\) 0 0
\(183\) −2.00000 −0.147844
\(184\) 0 0
\(185\) 3.00000 5.19615i 0.220564 0.382029i
\(186\) 0 0
\(187\) 4.50000 7.79423i 0.329073 0.569970i
\(188\) −3.00000 + 5.19615i −0.218797 + 0.378968i
\(189\) 4.00000 0.290957
\(190\) 0 0
\(191\) 3.00000 0.217072 0.108536 0.994092i \(-0.465384\pi\)
0.108536 + 0.994092i \(0.465384\pi\)
\(192\) 8.00000 13.8564i 0.577350 1.00000i
\(193\) −2.00000 + 3.46410i −0.143963 + 0.249351i −0.928986 0.370116i \(-0.879318\pi\)
0.785022 + 0.619467i \(0.212651\pi\)
\(194\) 0 0
\(195\) −12.0000 + 20.7846i −0.859338 + 1.48842i
\(196\) −6.00000 10.3923i −0.428571 0.742307i
\(197\) 18.0000 1.28245 0.641223 0.767354i \(-0.278427\pi\)
0.641223 + 0.767354i \(0.278427\pi\)
\(198\) 0 0
\(199\) −5.50000 9.52628i −0.389885 0.675300i 0.602549 0.798082i \(-0.294152\pi\)
−0.992434 + 0.122782i \(0.960818\pi\)
\(200\) 0 0
\(201\) 8.00000 0.564276
\(202\) 0 0
\(203\) −3.00000 5.19615i −0.210559 0.364698i
\(204\) −6.00000 + 10.3923i −0.420084 + 0.727607i
\(205\) −9.00000 15.5885i −0.628587 1.08875i
\(206\) 0 0
\(207\) 0 0
\(208\) 16.0000 1.10940
\(209\) 0 0
\(210\) 0 0
\(211\) 7.00000 12.1244i 0.481900 0.834675i −0.517884 0.855451i \(-0.673280\pi\)
0.999784 + 0.0207756i \(0.00661356\pi\)
\(212\) −12.0000 + 20.7846i −0.824163 + 1.42749i
\(213\) 6.00000 + 10.3923i 0.411113 + 0.712069i
\(214\) 0 0
\(215\) 1.50000 + 2.59808i 0.102299 + 0.177187i
\(216\) 0 0
\(217\) −4.00000 −0.271538
\(218\) 0 0
\(219\) 7.00000 + 12.1244i 0.473016 + 0.819288i
\(220\) −18.0000 −1.21356
\(221\) −12.0000 −0.807207
\(222\) 0 0
\(223\) −5.00000 + 8.66025i −0.334825 + 0.579934i −0.983451 0.181173i \(-0.942010\pi\)
0.648626 + 0.761107i \(0.275344\pi\)
\(224\) 0 0
\(225\) −2.00000 + 3.46410i −0.133333 + 0.230940i
\(226\) 0 0
\(227\) −12.0000 −0.796468 −0.398234 0.917284i \(-0.630377\pi\)
−0.398234 + 0.917284i \(0.630377\pi\)
\(228\) 0 0
\(229\) 5.00000 0.330409 0.165205 0.986259i \(-0.447172\pi\)
0.165205 + 0.986259i \(0.447172\pi\)
\(230\) 0 0
\(231\) 3.00000 5.19615i 0.197386 0.341882i
\(232\) 0 0
\(233\) 10.5000 18.1865i 0.687878 1.19144i −0.284645 0.958633i \(-0.591876\pi\)
0.972523 0.232806i \(-0.0747909\pi\)
\(234\) 0 0
\(235\) −9.00000 −0.587095
\(236\) −12.0000 −0.781133
\(237\) 8.00000 + 13.8564i 0.519656 + 0.900070i
\(238\) 0 0
\(239\) 15.0000 0.970269 0.485135 0.874439i \(-0.338771\pi\)
0.485135 + 0.874439i \(0.338771\pi\)
\(240\) 24.0000 1.54919
\(241\) −5.00000 8.66025i −0.322078 0.557856i 0.658838 0.752285i \(-0.271048\pi\)
−0.980917 + 0.194429i \(0.937715\pi\)
\(242\) 0 0
\(243\) 5.00000 + 8.66025i 0.320750 + 0.555556i
\(244\) −1.00000 + 1.73205i −0.0640184 + 0.110883i
\(245\) 9.00000 15.5885i 0.574989 0.995910i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −12.0000 + 20.7846i −0.760469 + 1.31717i
\(250\) 0 0
\(251\) −10.5000 18.1865i −0.662754 1.14792i −0.979889 0.199543i \(-0.936054\pi\)
0.317135 0.948380i \(-0.397279\pi\)
\(252\) −1.00000 + 1.73205i −0.0629941 + 0.109109i
\(253\) 0 0
\(254\) 0 0
\(255\) −18.0000 −1.12720
\(256\) −8.00000 13.8564i −0.500000 0.866025i
\(257\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(258\) 0 0
\(259\) 2.00000 0.124274
\(260\) 12.0000 + 20.7846i 0.744208 + 1.28901i
\(261\) 3.00000 5.19615i 0.185695 0.321634i
\(262\) 0 0
\(263\) −4.50000 + 7.79423i −0.277482 + 0.480613i −0.970758 0.240059i \(-0.922833\pi\)
0.693276 + 0.720672i \(0.256167\pi\)
\(264\) 0 0
\(265\) −36.0000 −2.21146
\(266\) 0 0
\(267\) −24.0000 −1.46878
\(268\) 4.00000 6.92820i 0.244339 0.423207i
\(269\) 12.0000 20.7846i 0.731653 1.26726i −0.224523 0.974469i \(-0.572083\pi\)
0.956176 0.292791i \(-0.0945841\pi\)
\(270\) 0 0
\(271\) 8.00000 13.8564i 0.485965 0.841717i −0.513905 0.857847i \(-0.671801\pi\)
0.999870 + 0.0161307i \(0.00513477\pi\)
\(272\) 6.00000 + 10.3923i 0.363803 + 0.630126i
\(273\) −8.00000 −0.484182
\(274\) 0 0
\(275\) −6.00000 10.3923i −0.361814 0.626680i
\(276\) 0 0
\(277\) −19.0000 −1.14160 −0.570800 0.821089i \(-0.693367\pi\)
−0.570800 + 0.821089i \(0.693367\pi\)
\(278\) 0 0
\(279\) −2.00000 3.46410i −0.119737 0.207390i
\(280\) 0 0
\(281\) 3.00000 + 5.19615i 0.178965 + 0.309976i 0.941526 0.336939i \(-0.109392\pi\)
−0.762561 + 0.646916i \(0.776058\pi\)
\(282\) 0 0
\(283\) 6.50000 11.2583i 0.386385 0.669238i −0.605575 0.795788i \(-0.707057\pi\)
0.991960 + 0.126550i \(0.0403903\pi\)
\(284\) 12.0000 0.712069
\(285\) 0 0
\(286\) 0 0
\(287\) 3.00000 5.19615i 0.177084 0.306719i
\(288\) 0 0
\(289\) 4.00000 + 6.92820i 0.235294 + 0.407541i
\(290\) 0 0
\(291\) 8.00000 + 13.8564i 0.468968 + 0.812277i
\(292\) 14.0000 0.819288
\(293\) 12.0000 0.701047 0.350524 0.936554i \(-0.386004\pi\)
0.350524 + 0.936554i \(0.386004\pi\)
\(294\) 0 0
\(295\) −9.00000 15.5885i −0.524000 0.907595i
\(296\) 0 0
\(297\) −12.0000 −0.696311
\(298\) 0 0
\(299\) 0 0
\(300\) 8.00000 + 13.8564i 0.461880 + 0.800000i
\(301\) −0.500000 + 0.866025i −0.0288195 + 0.0499169i
\(302\) 0 0
\(303\) 12.0000 0.689382
\(304\) 0 0
\(305\) −3.00000 −0.171780
\(306\) 0 0
\(307\) 10.0000 17.3205i 0.570730 0.988534i −0.425761 0.904836i \(-0.639994\pi\)
0.996491 0.0836980i \(-0.0266731\pi\)
\(308\) −3.00000 5.19615i −0.170941 0.296078i
\(309\) 14.0000 24.2487i 0.796432 1.37946i
\(310\) 0 0
\(311\) −3.00000 −0.170114 −0.0850572 0.996376i \(-0.527107\pi\)
−0.0850572 + 0.996376i \(0.527107\pi\)
\(312\) 0 0
\(313\) 5.00000 + 8.66025i 0.282617 + 0.489506i 0.972028 0.234863i \(-0.0754642\pi\)
−0.689412 + 0.724370i \(0.742131\pi\)
\(314\) 0 0
\(315\) −3.00000 −0.169031
\(316\) 16.0000 0.900070
\(317\) 3.00000 + 5.19615i 0.168497 + 0.291845i 0.937892 0.346929i \(-0.112775\pi\)
−0.769395 + 0.638774i \(0.779442\pi\)
\(318\) 0 0
\(319\) 9.00000 + 15.5885i 0.503903 + 0.872786i
\(320\) 12.0000 20.7846i 0.670820 1.16190i
\(321\) −18.0000 + 31.1769i −1.00466 + 1.74013i
\(322\) 0 0
\(323\) 0 0
\(324\) 22.0000 1.22222
\(325\) −8.00000 + 13.8564i −0.443760 + 0.768615i
\(326\) 0 0
\(327\) −16.0000 27.7128i −0.884802 1.53252i
\(328\) 0 0
\(329\) −1.50000 2.59808i −0.0826977 0.143237i
\(330\) 0 0
\(331\) 28.0000 1.53902 0.769510 0.638635i \(-0.220501\pi\)
0.769510 + 0.638635i \(0.220501\pi\)
\(332\) 12.0000 + 20.7846i 0.658586 + 1.14070i
\(333\) 1.00000 + 1.73205i 0.0547997 + 0.0949158i
\(334\) 0 0
\(335\) 12.0000 0.655630
\(336\) 4.00000 + 6.92820i 0.218218 + 0.377964i
\(337\) 16.0000 27.7128i 0.871576 1.50961i 0.0112091 0.999937i \(-0.496432\pi\)
0.860366 0.509676i \(-0.170235\pi\)
\(338\) 0 0
\(339\) 6.00000 10.3923i 0.325875 0.564433i
\(340\) −9.00000 + 15.5885i −0.488094 + 0.845403i
\(341\) 12.0000 0.649836
\(342\) 0 0
\(343\) 13.0000 0.701934
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −10.5000 + 18.1865i −0.563670 + 0.976304i 0.433503 + 0.901152i \(0.357278\pi\)
−0.997172 + 0.0751519i \(0.976056\pi\)
\(348\) −12.0000 20.7846i −0.643268 1.11417i
\(349\) 17.0000 0.909989 0.454995 0.890494i \(-0.349641\pi\)
0.454995 + 0.890494i \(0.349641\pi\)
\(350\) 0 0
\(351\) 8.00000 + 13.8564i 0.427008 + 0.739600i
\(352\) 0 0
\(353\) −6.00000 −0.319348 −0.159674 0.987170i \(-0.551044\pi\)
−0.159674 + 0.987170i \(0.551044\pi\)
\(354\) 0 0
\(355\) 9.00000 + 15.5885i 0.477670 + 0.827349i
\(356\) −12.0000 + 20.7846i −0.635999 + 1.10158i
\(357\) −3.00000 5.19615i −0.158777 0.275010i
\(358\) 0 0
\(359\) −7.50000 + 12.9904i −0.395835 + 0.685606i −0.993207 0.116358i \(-0.962878\pi\)
0.597372 + 0.801964i \(0.296211\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 0 0
\(363\) 2.00000 3.46410i 0.104973 0.181818i
\(364\) −4.00000 + 6.92820i −0.209657 + 0.363137i
\(365\) 10.5000 + 18.1865i 0.549595 + 0.951927i
\(366\) 0 0
\(367\) −4.00000 6.92820i −0.208798 0.361649i 0.742538 0.669804i \(-0.233622\pi\)
−0.951336 + 0.308155i \(0.900289\pi\)
\(368\) 0 0
\(369\) 6.00000 0.312348
\(370\) 0 0
\(371\) −6.00000 10.3923i −0.311504 0.539542i
\(372\) −16.0000 −0.829561
\(373\) 4.00000 0.207112 0.103556 0.994624i \(-0.466978\pi\)
0.103556 + 0.994624i \(0.466978\pi\)
\(374\) 0 0
\(375\) 3.00000 5.19615i 0.154919 0.268328i
\(376\) 0 0
\(377\) 12.0000 20.7846i 0.618031 1.07046i
\(378\) 0 0
\(379\) 34.0000 1.74646 0.873231 0.487306i \(-0.162020\pi\)
0.873231 + 0.487306i \(0.162020\pi\)
\(380\) 0 0
\(381\) −4.00000 −0.204926
\(382\) 0 0
\(383\) 6.00000 10.3923i 0.306586 0.531022i −0.671027 0.741433i \(-0.734147\pi\)
0.977613 + 0.210411i \(0.0674801\pi\)
\(384\) 0 0
\(385\) 4.50000 7.79423i 0.229341 0.397231i
\(386\) 0 0
\(387\) −1.00000 −0.0508329
\(388\) 16.0000 0.812277
\(389\) −7.50000 12.9904i −0.380265 0.658638i 0.610835 0.791758i \(-0.290834\pi\)
−0.991100 + 0.133120i \(0.957501\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 15.0000 + 25.9808i 0.756650 + 1.31056i
\(394\) 0 0
\(395\) 12.0000 + 20.7846i 0.603786 + 1.04579i
\(396\) 3.00000 5.19615i 0.150756 0.261116i
\(397\) 3.50000 6.06218i 0.175660 0.304252i −0.764730 0.644351i \(-0.777127\pi\)
0.940389 + 0.340099i \(0.110461\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 16.0000 0.800000
\(401\) 6.00000 10.3923i 0.299626 0.518967i −0.676425 0.736512i \(-0.736472\pi\)
0.976050 + 0.217545i \(0.0698049\pi\)
\(402\) 0 0
\(403\) −8.00000 13.8564i −0.398508 0.690237i
\(404\) 6.00000 10.3923i 0.298511 0.517036i
\(405\) 16.5000 + 28.5788i 0.819892 + 1.42009i
\(406\) 0 0
\(407\) −6.00000 −0.297409
\(408\) 0 0
\(409\) −2.00000 3.46410i −0.0988936 0.171289i 0.812333 0.583193i \(-0.198197\pi\)
−0.911227 + 0.411905i \(0.864864\pi\)
\(410\) 0 0
\(411\) −6.00000 −0.295958
\(412\) −14.0000 24.2487i −0.689730 1.19465i
\(413\) 3.00000 5.19615i 0.147620 0.255686i
\(414\) 0 0
\(415\) −18.0000 + 31.1769i −0.883585 + 1.53041i
\(416\) 0 0
\(417\) −26.0000 −1.27323
\(418\) 0 0
\(419\) −12.0000 −0.586238 −0.293119 0.956076i \(-0.594693\pi\)
−0.293119 + 0.956076i \(0.594693\pi\)
\(420\) −6.00000 + 10.3923i −0.292770 + 0.507093i
\(421\) 4.00000 6.92820i 0.194948 0.337660i −0.751935 0.659237i \(-0.770879\pi\)
0.946883 + 0.321577i \(0.104213\pi\)
\(422\) 0 0
\(423\) 1.50000 2.59808i 0.0729325 0.126323i
\(424\) 0 0
\(425\) −12.0000 −0.582086
\(426\) 0 0
\(427\) −0.500000 0.866025i −0.0241967 0.0419099i
\(428\) 18.0000 + 31.1769i 0.870063 + 1.50699i
\(429\) 24.0000 1.15873
\(430\) 0 0
\(431\) −12.0000 20.7846i −0.578020 1.00116i −0.995706 0.0925683i \(-0.970492\pi\)
0.417687 0.908591i \(-0.362841\pi\)
\(432\) 8.00000 13.8564i 0.384900 0.666667i
\(433\) 1.00000 + 1.73205i 0.0480569 + 0.0832370i 0.889053 0.457804i \(-0.151364\pi\)
−0.840996 + 0.541041i \(0.818030\pi\)
\(434\) 0 0
\(435\) 18.0000 31.1769i 0.863034 1.49482i
\(436\) −32.0000 −1.53252
\(437\) 0 0
\(438\) 0 0
\(439\) −5.00000 + 8.66025i −0.238637 + 0.413331i −0.960323 0.278889i \(-0.910034\pi\)
0.721686 + 0.692220i \(0.243367\pi\)
\(440\) 0 0
\(441\) 3.00000 + 5.19615i 0.142857 + 0.247436i
\(442\) 0 0
\(443\) 1.50000 + 2.59808i 0.0712672 + 0.123438i 0.899457 0.437009i \(-0.143962\pi\)
−0.828190 + 0.560448i \(0.810629\pi\)
\(444\) 8.00000 0.379663
\(445\) −36.0000 −1.70656
\(446\) 0 0
\(447\) −21.0000 36.3731i −0.993266 1.72039i
\(448\) 8.00000 0.377964
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 0 0
\(451\) −9.00000 + 15.5885i −0.423793 + 0.734032i
\(452\) −6.00000 10.3923i −0.282216 0.488813i
\(453\) −10.0000 + 17.3205i −0.469841 + 0.813788i
\(454\) 0 0
\(455\) −12.0000 −0.562569
\(456\) 0 0
\(457\) −37.0000 −1.73079 −0.865393 0.501093i \(-0.832931\pi\)
−0.865393 + 0.501093i \(0.832931\pi\)
\(458\) 0 0
\(459\) −6.00000 + 10.3923i −0.280056 + 0.485071i
\(460\) 0 0
\(461\) −4.50000 + 7.79423i −0.209586 + 0.363013i −0.951584 0.307388i \(-0.900545\pi\)
0.741998 + 0.670402i \(0.233878\pi\)
\(462\) 0 0
\(463\) −31.0000 −1.44069 −0.720346 0.693615i \(-0.756017\pi\)
−0.720346 + 0.693615i \(0.756017\pi\)
\(464\) −24.0000 −1.11417
\(465\) −12.0000 20.7846i −0.556487 0.963863i
\(466\) 0 0
\(467\) −27.0000 −1.24941 −0.624705 0.780860i \(-0.714781\pi\)
−0.624705 + 0.780860i \(0.714781\pi\)
\(468\) −8.00000 −0.369800
\(469\) 2.00000 + 3.46410i 0.0923514 + 0.159957i
\(470\) 0 0
\(471\) −14.0000 24.2487i −0.645086 1.11732i
\(472\) 0 0
\(473\) 1.50000 2.59808i 0.0689701 0.119460i
\(474\) 0 0
\(475\) 0 0
\(476\) −6.00000 −0.275010
\(477\) 6.00000 10.3923i 0.274721 0.475831i
\(478\) 0 0
\(479\) 6.00000 + 10.3923i 0.274147 + 0.474837i 0.969920 0.243426i \(-0.0782712\pi\)
−0.695773 + 0.718262i \(0.744938\pi\)
\(480\) 0 0
\(481\) 4.00000 + 6.92820i 0.182384 + 0.315899i
\(482\) 0 0
\(483\) 0 0
\(484\) −2.00000 3.46410i −0.0909091 0.157459i
\(485\) 12.0000 + 20.7846i 0.544892 + 0.943781i
\(486\) 0 0
\(487\) −2.00000 −0.0906287 −0.0453143 0.998973i \(-0.514429\pi\)
−0.0453143 + 0.998973i \(0.514429\pi\)
\(488\) 0 0
\(489\) −20.0000 + 34.6410i −0.904431 + 1.56652i
\(490\) 0 0
\(491\) −6.00000 + 10.3923i −0.270776 + 0.468998i −0.969061 0.246822i \(-0.920614\pi\)
0.698285 + 0.715820i \(0.253947\pi\)
\(492\) 12.0000 20.7846i 0.541002 0.937043i
\(493\) 18.0000 0.810679
\(494\) 0 0
\(495\) 9.00000 0.404520
\(496\) −8.00000 + 13.8564i −0.359211 + 0.622171i
\(497\) −3.00000 + 5.19615i −0.134568 + 0.233079i
\(498\) 0 0
\(499\) −2.50000 + 4.33013i −0.111915 + 0.193843i −0.916542 0.399937i \(-0.869032\pi\)
0.804627 + 0.593780i \(0.202365\pi\)
\(500\) −3.00000 5.19615i −0.134164 0.232379i
\(501\) 36.0000 1.60836
\(502\) 0 0
\(503\) −6.00000 10.3923i −0.267527 0.463370i 0.700696 0.713460i \(-0.252873\pi\)
−0.968223 + 0.250090i \(0.919540\pi\)
\(504\) 0 0
\(505\) 18.0000 0.800989
\(506\) 0 0
\(507\) −3.00000 5.19615i −0.133235 0.230769i
\(508\) −2.00000 + 3.46410i −0.0887357 + 0.153695i
\(509\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(510\) 0 0
\(511\) −3.50000 + 6.06218i −0.154831 + 0.268175i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 21.0000 36.3731i 0.925371 1.60279i
\(516\) −2.00000 + 3.46410i −0.0880451 + 0.152499i
\(517\) 4.50000 + 7.79423i 0.197910 + 0.342790i
\(518\) 0 0
\(519\) −18.0000 31.1769i −0.790112 1.36851i
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) 19.0000 + 32.9090i 0.830812 + 1.43901i 0.897395 + 0.441228i \(0.145457\pi\)
−0.0665832 + 0.997781i \(0.521210\pi\)
\(524\) 30.0000 1.31056
\(525\) −8.00000 −0.349149
\(526\) 0 0
\(527\) 6.00000 10.3923i 0.261364 0.452696i
\(528\) −12.0000 20.7846i −0.522233 0.904534i
\(529\) 11.5000 19.9186i 0.500000 0.866025i
\(530\) 0 0
\(531\) 6.00000 0.260378
\(532\) 0 0
\(533\) 24.0000 1.03956
\(534\) 0 0
\(535\) −27.0000 + 46.7654i −1.16731 + 2.02184i
\(536\) 0 0
\(537\) −18.0000 + 31.1769i −0.776757 + 1.34538i
\(538\) 0 0
\(539\) −18.0000 −0.775315
\(540\) 24.0000 1.03280
\(541\) 12.5000 + 21.6506i 0.537417 + 0.930834i 0.999042 + 0.0437584i \(0.0139332\pi\)
−0.461625 + 0.887075i \(0.652733\pi\)
\(542\) 0 0
\(543\) −4.00000 −0.171656
\(544\) 0 0
\(545\) −24.0000 41.5692i −1.02805 1.78063i
\(546\) 0 0
\(547\) −14.0000 24.2487i −0.598597 1.03680i −0.993028 0.117875i \(-0.962392\pi\)
0.394432 0.918925i \(-0.370941\pi\)
\(548\) −3.00000 + 5.19615i −0.128154 + 0.221969i
\(549\) 0.500000 0.866025i 0.0213395 0.0369611i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −4.00000 + 6.92820i −0.170097 + 0.294617i
\(554\) 0 0
\(555\) 6.00000 + 10.3923i 0.254686 + 0.441129i
\(556\) −13.0000 + 22.5167i −0.551323 + 0.954919i
\(557\) −10.5000 18.1865i −0.444899 0.770588i 0.553146 0.833084i \(-0.313427\pi\)
−0.998045 + 0.0624962i \(0.980094\pi\)
\(558\) 0 0
\(559\) −4.00000 −0.169182
\(560\) 6.00000 + 10.3923i 0.253546 + 0.439155i
\(561\) 9.00000 + 15.5885i 0.379980 + 0.658145i
\(562\) 0 0
\(563\) −6.00000 −0.252870 −0.126435 0.991975i \(-0.540353\pi\)
−0.126435 + 0.991975i \(0.540353\pi\)
\(564\) −6.00000 10.3923i −0.252646 0.437595i
\(565\) 9.00000 15.5885i 0.378633 0.655811i
\(566\) 0 0
\(567\) −5.50000 + 9.52628i −0.230978 + 0.400066i
\(568\) 0 0
\(569\) 24.0000 1.00613 0.503066 0.864248i \(-0.332205\pi\)
0.503066 + 0.864248i \(0.332205\pi\)
\(570\) 0 0
\(571\) −4.00000 −0.167395 −0.0836974 0.996491i \(-0.526673\pi\)
−0.0836974 + 0.996491i \(0.526673\pi\)
\(572\) 12.0000 20.7846i 0.501745 0.869048i
\(573\) −3.00000 + 5.19615i −0.125327 + 0.217072i
\(574\) 0 0
\(575\) 0 0
\(576\) 4.00000 + 6.92820i 0.166667 + 0.288675i
\(577\) 11.0000 0.457936 0.228968 0.973434i \(-0.426465\pi\)
0.228968 + 0.973434i \(0.426465\pi\)
\(578\) 0 0
\(579\) −4.00000 6.92820i −0.166234 0.287926i
\(580\) −18.0000 31.1769i −0.747409 1.29455i
\(581\) −12.0000 −0.497844
\(582\) 0 0
\(583\) 18.0000 + 31.1769i 0.745484 + 1.29122i
\(584\) 0 0
\(585\) −6.00000 10.3923i −0.248069 0.429669i
\(586\) 0 0
\(587\) −22.5000 + 38.9711i −0.928674 + 1.60851i −0.143132 + 0.989704i \(0.545717\pi\)
−0.785543 + 0.618808i \(0.787616\pi\)
\(588\) 24.0000 0.989743
\(589\) 0 0
\(590\) 0 0
\(591\) −18.0000 + 31.1769i −0.740421 + 1.28245i
\(592\) 4.00000 6.92820i 0.164399 0.284747i
\(593\) 21.0000 + 36.3731i 0.862367 + 1.49366i 0.869638 + 0.493689i \(0.164352\pi\)
−0.00727173 + 0.999974i \(0.502315\pi\)
\(594\) 0 0
\(595\) −4.50000 7.79423i −0.184482 0.319532i
\(596\) −42.0000 −1.72039
\(597\) 22.0000 0.900400
\(598\) 0 0
\(599\) −18.0000 31.1769i −0.735460 1.27385i −0.954521 0.298143i \(-0.903633\pi\)
0.219061 0.975711i \(-0.429701\pi\)
\(600\) 0 0
\(601\) −26.0000 −1.06056 −0.530281 0.847822i \(-0.677914\pi\)
−0.530281 + 0.847822i \(0.677914\pi\)
\(602\) 0 0
\(603\) −2.00000 + 3.46410i −0.0814463 + 0.141069i
\(604\) 10.0000 + 17.3205i 0.406894 + 0.704761i
\(605\) 3.00000 5.19615i 0.121967 0.211254i
\(606\) 0 0
\(607\) −32.0000 −1.29884 −0.649420 0.760430i \(-0.724988\pi\)
−0.649420 + 0.760430i \(0.724988\pi\)
\(608\) 0 0
\(609\) 12.0000 0.486265
\(610\) 0 0
\(611\) 6.00000 10.3923i 0.242734 0.420428i
\(612\) −3.00000 5.19615i −0.121268 0.210042i
\(613\) −14.5000 + 25.1147i −0.585649 + 1.01437i 0.409145 + 0.912470i \(0.365827\pi\)
−0.994794 + 0.101905i \(0.967506\pi\)
\(614\) 0 0
\(615\) 36.0000 1.45166
\(616\) 0 0
\(617\) −4.50000 7.79423i −0.181163 0.313784i 0.761114 0.648618i \(-0.224653\pi\)
−0.942277 + 0.334835i \(0.891320\pi\)
\(618\) 0 0
\(619\) 44.0000 1.76851 0.884255 0.467005i \(-0.154667\pi\)
0.884255 + 0.467005i \(0.154667\pi\)
\(620\) −24.0000 −0.963863
\(621\) 0 0
\(622\) 0 0
\(623\) −6.00000 10.3923i −0.240385 0.416359i
\(624\) −16.0000 + 27.7128i −0.640513 + 1.10940i
\(625\) 14.5000 25.1147i 0.580000 1.00459i
\(626\) 0 0
\(627\) 0 0
\(628\) −28.0000 −1.11732
\(629\) −3.00000 + 5.19615i −0.119618 + 0.207184i
\(630\) 0 0
\(631\) −5.50000 9.52628i −0.218952 0.379235i 0.735536 0.677485i \(-0.236930\pi\)
−0.954488 + 0.298250i \(0.903597\pi\)
\(632\) 0 0
\(633\) 14.0000 + 24.2487i 0.556450 + 0.963800i
\(634\) 0 0
\(635\) −6.00000 −0.238103
\(636\) −24.0000 41.5692i −0.951662 1.64833i
\(637\) 12.0000 + 20.7846i 0.475457 + 0.823516i
\(638\) 0 0
\(639\) −6.00000 −0.237356
\(640\) 0 0
\(641\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(642\) 0 0
\(643\) 6.50000 11.2583i 0.256335 0.443985i −0.708922 0.705287i \(-0.750818\pi\)
0.965257 + 0.261301i \(0.0841516\pi\)
\(644\) 0 0
\(645\) −6.00000 −0.236250
\(646\) 0 0
\(647\) 27.0000 1.06148 0.530740 0.847535i \(-0.321914\pi\)
0.530740 + 0.847535i \(0.321914\pi\)
\(648\) 0 0
\(649\) −9.00000 + 15.5885i −0.353281 + 0.611900i
\(650\) 0 0
\(651\) 4.00000 6.92820i 0.156772 0.271538i
\(652\) 20.0000 + 34.6410i 0.783260 + 1.35665i
\(653\) −39.0000 −1.52619 −0.763094 0.646288i \(-0.776321\pi\)
−0.763094 + 0.646288i \(0.776321\pi\)
\(654\) 0 0
\(655\) 22.5000 + 38.9711i 0.879148 + 1.52273i
\(656\) −12.0000 20.7846i −0.468521 0.811503i
\(657\) −7.00000 −0.273096
\(658\) 0 0
\(659\) −15.0000 25.9808i −0.584317 1.01207i −0.994960 0.100271i \(-0.968029\pi\)
0.410643 0.911796i \(-0.365304\pi\)
\(660\) 18.0000 31.1769i 0.700649 1.21356i
\(661\) 16.0000 + 27.7128i 0.622328 + 1.07790i 0.989051 + 0.147573i \(0.0471463\pi\)
−0.366723 + 0.930330i \(0.619520\pi\)
\(662\) 0 0
\(663\) 12.0000 20.7846i 0.466041 0.807207i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 18.0000 31.1769i 0.696441 1.20627i
\(669\) −10.0000 17.3205i −0.386622 0.669650i
\(670\) 0 0
\(671\) 1.50000 + 2.59808i 0.0579069 + 0.100298i
\(672\) 0 0
\(673\) 10.0000 0.385472 0.192736 0.981251i \(-0.438264\pi\)
0.192736 + 0.981251i \(0.438264\pi\)
\(674\) 0 0
\(675\) 8.00000 + 13.8564i 0.307920 + 0.533333i
\(676\) −6.00000 −0.230769
\(677\) 42.0000 1.61419 0.807096 0.590421i \(-0.201038\pi\)
0.807096 + 0.590421i \(0.201038\pi\)
\(678\) 0 0
\(679\) −4.00000 + 6.92820i −0.153506 + 0.265880i
\(680\) 0 0
\(681\) 12.0000 20.7846i 0.459841 0.796468i
\(682\) 0 0
\(683\) −36.0000 −1.37750 −0.688751 0.724998i \(-0.741841\pi\)
−0.688751 + 0.724998i \(0.741841\pi\)
\(684\) 0 0
\(685\) −9.00000 −0.343872
\(686\) 0 0
\(687\) −5.00000 + 8.66025i −0.190762 + 0.330409i
\(688\) 2.00000 + 3.46410i 0.0762493 + 0.132068i
\(689\) 24.0000 41.5692i 0.914327 1.58366i
\(690\) 0 0
\(691\) 17.0000 0.646710 0.323355 0.946278i \(-0.395189\pi\)
0.323355 + 0.946278i \(0.395189\pi\)
\(692\) −36.0000 −1.36851
\(693\) 1.50000 + 2.59808i 0.0569803 + 0.0986928i
\(694\) 0 0
\(695\) −39.0000 −1.47935
\(696\) 0 0
\(697\) 9.00000 + 15.5885i 0.340899 + 0.590455i
\(698\) 0 0
\(699\) 21.0000 + 36.3731i 0.794293 + 1.37576i
\(700\) −4.00000 + 6.92820i −0.151186 + 0.261861i
\(701\) −3.00000 + 5.19615i −0.113308 + 0.196256i −0.917102 0.398652i \(-0.869478\pi\)
0.803794 + 0.594908i \(0.202811\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −24.0000 −0.904534
\(705\) 9.00000 15.5885i 0.338960 0.587095i
\(706\) 0 0
\(707\) 3.00000 + 5.19615i 0.112827 + 0.195421i
\(708\) 12.0000 20.7846i 0.450988 0.781133i
\(709\) −13.0000 22.5167i −0.488225 0.845631i 0.511683 0.859174i \(-0.329022\pi\)
−0.999908 + 0.0135434i \(0.995689\pi\)
\(710\) 0 0
\(711\) −8.00000 −0.300023
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 36.0000 1.34632
\(716\) 18.0000 + 31.1769i 0.672692 + 1.16514i
\(717\) −15.0000 + 25.9808i −0.560185 + 0.970269i
\(718\) 0 0
\(719\) −7.50000 + 12.9904i −0.279703 + 0.484459i −0.971311 0.237814i \(-0.923569\pi\)
0.691608 + 0.722273i \(0.256903\pi\)
\(720\) −6.00000 + 10.3923i −0.223607 + 0.387298i
\(721\) 14.0000 0.521387
\(722\) 0 0
\(723\) 20.0000 0.743808
\(724\) −2.00000 + 3.46410i −0.0743294 + 0.128742i
\(725\) 12.0000 20.7846i 0.445669 0.771921i
\(726\) 0 0
\(727\) 9.50000 16.4545i 0.352335 0.610263i −0.634323 0.773068i \(-0.718721\pi\)
0.986658 + 0.162805i \(0.0520543\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) −1.50000 2.59808i −0.0554795 0.0960933i
\(732\) −2.00000 3.46410i −0.0739221 0.128037i
\(733\) −22.0000 −0.812589 −0.406294 0.913742i \(-0.633179\pi\)
−0.406294 + 0.913742i \(0.633179\pi\)
\(734\) 0 0
\(735\) 18.0000 + 31.1769i 0.663940 + 1.14998i
\(736\) 0 0
\(737\) −6.00000 10.3923i −0.221013 0.382805i
\(738\) 0 0
\(739\) −5.50000 + 9.52628i −0.202321 + 0.350430i −0.949276 0.314445i \(-0.898182\pi\)
0.746955 + 0.664875i \(0.231515\pi\)
\(740\) 12.0000 0.441129
\(741\) 0 0
\(742\) 0 0
\(743\) −12.0000 + 20.7846i −0.440237 + 0.762513i −0.997707 0.0676840i \(-0.978439\pi\)
0.557470 + 0.830197i \(0.311772\pi\)
\(744\) 0 0
\(745\) −31.5000 54.5596i −1.15407 1.99891i
\(746\) 0 0
\(747\) −6.00000 10.3923i −0.219529 0.380235i
\(748\) 18.0000 0.658145
\(749\) −18.0000 −0.657706
\(750\) 0 0
\(751\) 16.0000 + 27.7128i 0.583848 + 1.01125i 0.995018 + 0.0996961i \(0.0317870\pi\)
−0.411170 + 0.911559i \(0.634880\pi\)
\(752\) −12.0000 −0.437595
\(753\) 42.0000 1.53057
\(754\) 0 0
\(755\) −15.0000 + 25.9808i −0.545906 + 0.945537i
\(756\) 4.00000 + 6.92820i 0.145479 + 0.251976i
\(757\) 12.5000 21.6506i 0.454320 0.786906i −0.544329 0.838872i \(-0.683216\pi\)
0.998649 + 0.0519664i \(0.0165489\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 33.0000 1.19625 0.598125 0.801403i \(-0.295913\pi\)
0.598125 + 0.801403i \(0.295913\pi\)
\(762\) 0 0
\(763\) 8.00000 13.8564i 0.289619 0.501636i
\(764\) 3.00000 + 5.19615i 0.108536 + 0.187990i
\(765\) 4.50000 7.79423i 0.162698 0.281801i
\(766\) 0 0
\(767\) 24.0000 0.866590
\(768\) 32.0000 1.15470
\(769\) −11.5000 19.9186i −0.414701 0.718283i 0.580696 0.814120i \(-0.302780\pi\)
−0.995397 + 0.0958377i \(0.969447\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −8.00000 −0.287926
\(773\) −3.00000 5.19615i −0.107903 0.186893i 0.807018 0.590527i \(-0.201080\pi\)
−0.914920 + 0.403634i \(0.867747\pi\)
\(774\) 0 0
\(775\) −8.00000 13.8564i −0.287368 0.497737i
\(776\) 0 0
\(777\) −2.00000 + 3.46410i −0.0717496 + 0.124274i
\(778\) 0 0
\(779\) 0 0
\(780\) −48.0000 −1.71868
\(781\) 9.00000 15.5885i 0.322045 0.557799i
\(782\) 0 0
\(783\) −12.0000 20.7846i −0.428845 0.742781i
\(784\) 12.0000 20.7846i 0.428571 0.742307i
\(785\) −21.0000 36.3731i −0.749522 1.29821i
\(786\) 0 0
\(787\) 4.00000 0.142585 0.0712923 0.997455i \(-0.477288\pi\)
0.0712923 + 0.997455i \(0.477288\pi\)
\(788\) 18.0000 + 31.1769i 0.641223 + 1.11063i
\(789\) −9.00000 15.5885i −0.320408 0.554964i
\(790\) 0 0
\(791\) 6.00000 0.213335
\(792\) 0 0
\(793\) 2.00000 3.46410i 0.0710221 0.123014i
\(794\) 0 0
\(795\) 36.0000 62.3538i 1.27679 2.21146i
\(796\) 11.0000 19.0526i 0.389885 0.675300i
\(797\) 12.0000 0.425062 0.212531 0.977154i \(-0.431829\pi\)
0.212531 + 0.977154i \(0.431829\pi\)
\(798\) 0 0
\(799\) 9.00000 0.318397
\(800\) 0 0
\(801\) 6.00000 10.3923i 0.212000 0.367194i
\(802\) 0 0
\(803\) 10.5000 18.1865i 0.370537 0.641789i
\(804\) 8.00000 + 13.8564i 0.282138 + 0.488678i
\(805\) 0 0
\(806\) 0 0
\(807\) 24.0000 + 41.5692i 0.844840 + 1.46331i
\(808\) 0 0
\(809\) −9.00000 −0.316423 −0.158212 0.987405i \(-0.550573\pi\)
−0.158212 + 0.987405i \(0.550573\pi\)
\(810\) 0 0
\(811\) −8.00000 13.8564i −0.280918 0.486564i 0.690693 0.723148i \(-0.257306\pi\)
−0.971611 + 0.236584i \(0.923972\pi\)
\(812\) 6.00000 10.3923i 0.210559 0.364698i
\(813\) 16.0000 + 27.7128i 0.561144 + 0.971931i
\(814\) 0 0
\(815\) −30.0000 + 51.9615i −1.05085 + 1.82013i
\(816\) −24.0000 −0.840168
\(817\) 0 0
\(818\) 0 0
\(819\) 2.00000 3.46410i 0.0698857 0.121046i
\(820\) 18.0000 31.1769i 0.628587 1.08875i
\(821\) −16.5000 28.5788i −0.575854 0.997408i −0.995948 0.0899279i \(-0.971336\pi\)
0.420094 0.907480i \(-0.361997\pi\)
\(822\) 0 0
\(823\) 24.5000 + 42.4352i 0.854016 + 1.47920i 0.877555 + 0.479477i \(0.159174\pi\)
−0.0235383 + 0.999723i \(0.507493\pi\)
\(824\) 0 0
\(825\) 24.0000 0.835573
\(826\) 0 0
\(827\) 6.00000 + 10.3923i 0.208640 + 0.361376i 0.951286 0.308308i \(-0.0997628\pi\)
−0.742646 + 0.669684i \(0.766429\pi\)
\(828\) 0 0
\(829\) 16.0000 0.555703 0.277851 0.960624i \(-0.410378\pi\)
0.277851 + 0.960624i \(0.410378\pi\)
\(830\) 0 0
\(831\) 19.0000 32.9090i 0.659103 1.14160i
\(832\) 16.0000 + 27.7128i 0.554700 + 0.960769i
\(833\) −9.00000 + 15.5885i −0.311832 + 0.540108i
\(834\) 0 0
\(835\) 54.0000 1.86875
\(836\) 0 0
\(837\) −16.0000 −0.553041
\(838\) 0 0
\(839\) 9.00000 15.5885i 0.310715 0.538173i −0.667803 0.744338i \(-0.732765\pi\)
0.978517 + 0.206165i \(0.0660984\pi\)
\(840\) 0 0
\(841\) −3.50000 + 6.06218i −0.120690 + 0.209041i
\(842\) 0 0
\(843\) −12.0000 −0.413302
\(844\) 28.0000 0.963800
\(845\) −4.50000 7.79423i −0.154805 0.268130i
\(846\) 0 0
\(847\) 2.00000 0.0687208
\(848\) −48.0000 −1.64833
\(849\) 13.0000 + 22.5167i 0.446159 + 0.772770i
\(850\) 0 0
\(851\) 0 0
\(852\) −12.0000 + 20.7846i −0.411113 + 0.712069i
\(853\) −13.0000 + 22.5167i −0.445112 + 0.770956i −0.998060 0.0622597i \(-0.980169\pi\)
0.552948 + 0.833215i \(0.313503\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 9.00000 15.5885i 0.307434 0.532492i −0.670366 0.742030i \(-0.733863\pi\)
0.977800 + 0.209539i \(0.0671963\pi\)
\(858\) 0 0
\(859\) 24.5000 + 42.4352i 0.835929 + 1.44787i 0.893272 + 0.449517i \(0.148404\pi\)
−0.0573424 + 0.998355i \(0.518263\pi\)
\(860\) −3.00000 + 5.19615i −0.102299 + 0.177187i
\(861\) 6.00000 + 10.3923i 0.204479 + 0.354169i
\(862\) 0 0
\(863\) −18.0000 −0.612727 −0.306364 0.951915i \(-0.599112\pi\)
−0.306364 + 0.951915i \(0.599112\pi\)
\(864\) 0 0
\(865\) −27.0000 46.7654i −0.918028 1.59007i
\(866\) 0 0
\(867\) −16.0000 −0.543388
\(868\) −4.00000 6.92820i −0.135769 0.235159i
\(869\) 12.0000 20.7846i 0.407072 0.705070i
\(870\) 0 0
\(871\) −8.00000 + 13.8564i −0.271070 + 0.469506i
\(872\) 0 0
\(873\) −8.00000 −0.270759
\(874\) 0 0
\(875\) 3.00000 0.101419
\(876\) −14.0000 + 24.2487i −0.473016 + 0.819288i
\(877\) −11.0000 + 19.0526i −0.371444 + 0.643359i −0.989788 0.142548i \(-0.954470\pi\)
0.618344 + 0.785907i \(0.287804\pi\)
\(878\) 0 0
\(879\) −12.0000 + 20.7846i −0.404750 + 0.701047i
\(880\) −18.0000 31.1769i −0.606780 1.05097i
\(881\) −27.0000 −0.909653 −0.454827 0.890580i \(-0.650299\pi\)
−0.454827 + 0.890580i \(0.650299\pi\)
\(882\) 0 0
\(883\) −23.5000 40.7032i −0.790838 1.36977i −0.925449 0.378873i \(-0.876312\pi\)
0.134611 0.990899i \(-0.457022\pi\)
\(884\) −12.0000 20.7846i −0.403604 0.699062i
\(885\) 36.0000 1.21013
\(886\) 0 0
\(887\) 9.00000 + 15.5885i 0.302190 + 0.523409i 0.976632 0.214919i \(-0.0689488\pi\)
−0.674441 + 0.738328i \(0.735615\pi\)
\(888\) 0 0
\(889\) −1.00000 1.73205i −0.0335389 0.0580911i
\(890\) 0 0
\(891\) 16.5000 28.5788i 0.552771 0.957427i
\(892\) −20.0000 −0.669650
\(893\) 0 0
\(894\) 0 0
\(895\) −27.0000 + 46.7654i −0.902510 + 1.56319i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 12.0000 + 20.7846i 0.400222 + 0.693206i
\(900\) −8.00000 −0.266667
\(901\) 36.0000 1.19933
\(902\) 0 0
\(903\) −1.00000 1.73205i −0.0332779 0.0576390i
\(904\) 0 0
\(905\) −6.00000 −0.199447
\(906\) 0 0
\(907\) 4.00000 6.92820i 0.132818 0.230047i −0.791944 0.610594i \(-0.790931\pi\)
0.924762 + 0.380547i \(0.124264\pi\)
\(908\) −12.0000 20.7846i −0.398234 0.689761i
\(909\) −3.00000 + 5.19615i −0.0995037 + 0.172345i
\(910\) 0 0
\(911\) 6.00000 0.198789 0.0993944 0.995048i \(-0.468309\pi\)
0.0993944 + 0.995048i \(0.468309\pi\)
\(912\) 0 0
\(913\) 36.0000 1.19143
\(914\) 0 0
\(915\) 3.00000 5.19615i 0.0991769 0.171780i
\(916\) 5.00000 + 8.66025i 0.165205 + 0.286143i
\(917\) −7.50000 + 12.9904i −0.247672 + 0.428980i
\(918\) 0 0
\(919\) 20.0000 0.659739 0.329870 0.944027i \(-0.392995\pi\)
0.329870 + 0.944027i \(0.392995\pi\)
\(920\) 0 0
\(921\) 20.0000 + 34.6410i 0.659022 + 1.14146i
\(922\) 0 0
\(923\) −24.0000 −0.789970
\(924\) 12.0000 0.394771
\(925\) 4.00000 + 6.92820i 0.131519 + 0.227798i
\(926\) 0 0
\(927\) 7.00000 + 12.1244i 0.229910 + 0.398216i
\(928\) 0 0
\(929\) 9.00000 15.5885i 0.295280 0.511441i −0.679770 0.733426i \(-0.737920\pi\)
0.975050 + 0.221985i \(0.0712536\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 42.0000 1.37576
\(933\) 3.00000 5.19615i 0.0982156 0.170114i
\(934\) 0 0
\(935\) 13.5000 + 23.3827i 0.441497 + 0.764696i
\(936\) 0 0
\(937\) 3.50000 + 6.06218i 0.114340 + 0.198043i 0.917516 0.397699i \(-0.130191\pi\)
−0.803176 + 0.595742i \(0.796858\pi\)
\(938\) 0 0
\(939\) −20.0000 −0.652675
\(940\) −9.00000 15.5885i −0.293548 0.508439i
\(941\) −9.00000 15.5885i −0.293392 0.508169i 0.681218 0.732081i \(-0.261451\pi\)
−0.974609 + 0.223912i \(0.928117\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) −12.0000 20.7846i −0.390567 0.676481i
\(945\) −6.00000 + 10.3923i −0.195180 + 0.338062i
\(946\) 0 0
\(947\) 18.0000 31.1769i 0.584921 1.01311i −0.409964 0.912102i \(-0.634459\pi\)
0.994885 0.101012i \(-0.0322080\pi\)
\(948\) −16.0000 + 27.7128i −0.519656 + 0.900070i
\(949\) −28.0000 −0.908918
\(950\) 0 0
\(951\) −12.0000 −0.389127
\(952\) 0 0
\(953\) −24.0000 + 41.5692i −0.777436 + 1.34656i 0.155979 + 0.987760i \(0.450147\pi\)
−0.933415 + 0.358799i \(0.883186\pi\)
\(954\) 0 0
\(955\) −4.50000 + 7.79423i −0.145617 + 0.252215i
\(956\) 15.0000 + 25.9808i 0.485135 + 0.840278i
\(957\) −36.0000 −1.16371
\(958\) 0 0
\(959\) −1.50000 2.59808i −0.0484375 0.0838963i
\(960\) 24.0000 + 41.5692i 0.774597 + 1.34164i
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) −9.00000 15.5885i −0.290021 0.502331i
\(964\) 10.0000 17.3205i 0.322078 0.557856i
\(965\) −6.00000 10.3923i −0.193147 0.334540i
\(966\) 0 0
\(967\) 20.0000 34.6410i 0.643157 1.11398i −0.341567 0.939857i \(-0.610958\pi\)
0.984724 0.174123i \(-0.0557089\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 30.0000 51.9615i 0.962746 1.66752i 0.247193 0.968966i \(-0.420492\pi\)
0.715553 0.698558i \(-0.246175\pi\)
\(972\) −10.0000 + 17.3205i −0.320750 + 0.555556i
\(973\) −6.50000 11.2583i −0.208380 0.360925i
\(974\) 0 0
\(975\) −16.0000 27.7128i −0.512410 0.887520i
\(976\) −4.00000 −0.128037
\(977\) −24.0000 −0.767828 −0.383914 0.923369i \(-0.625424\pi\)
−0.383914 + 0.923369i \(0.625424\pi\)
\(978\) 0 0
\(979\) 18.0000 + 31.1769i 0.575282 + 0.996419i
\(980\) 36.0000 1.14998
\(981\) 16.0000 0.510841
\(982\) 0 0
\(983\) −18.0000 + 31.1769i −0.574111 + 0.994389i 0.422027 + 0.906583i \(0.361319\pi\)
−0.996138 + 0.0878058i \(0.972015\pi\)
\(984\) 0 0
\(985\) −27.0000 + 46.7654i −0.860292 + 1.49007i
\(986\) 0 0
\(987\) 6.00000 0.190982
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −17.0000 + 29.4449i −0.540023 + 0.935347i 0.458879 + 0.888499i \(0.348251\pi\)
−0.998902 + 0.0468483i \(0.985082\pi\)
\(992\) 0 0
\(993\) −28.0000 + 48.4974i −0.888553 + 1.53902i
\(994\) 0 0
\(995\) 33.0000 1.04617
\(996\) −48.0000 −1.52094
\(997\) −8.50000 14.7224i −0.269198 0.466264i 0.699457 0.714675i \(-0.253425\pi\)
−0.968655 + 0.248410i \(0.920092\pi\)
\(998\) 0 0
\(999\) 8.00000 0.253109
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 361.2.c.a.68.1 2
19.2 odd 18 361.2.e.d.234.1 6
19.3 odd 18 361.2.e.d.99.1 6
19.4 even 9 361.2.e.e.62.1 6
19.5 even 9 361.2.e.e.28.1 6
19.6 even 9 361.2.e.e.54.1 6
19.7 even 3 inner 361.2.c.a.292.1 2
19.8 odd 6 19.2.a.a.1.1 1
19.9 even 9 361.2.e.e.245.1 6
19.10 odd 18 361.2.e.d.245.1 6
19.11 even 3 361.2.a.b.1.1 1
19.12 odd 6 361.2.c.c.292.1 2
19.13 odd 18 361.2.e.d.54.1 6
19.14 odd 18 361.2.e.d.28.1 6
19.15 odd 18 361.2.e.d.62.1 6
19.16 even 9 361.2.e.e.99.1 6
19.17 even 9 361.2.e.e.234.1 6
19.18 odd 2 361.2.c.c.68.1 2
57.8 even 6 171.2.a.b.1.1 1
57.11 odd 6 3249.2.a.d.1.1 1
76.11 odd 6 5776.2.a.c.1.1 1
76.27 even 6 304.2.a.f.1.1 1
95.8 even 12 475.2.b.a.324.1 2
95.27 even 12 475.2.b.a.324.2 2
95.49 even 6 9025.2.a.d.1.1 1
95.84 odd 6 475.2.a.b.1.1 1
133.27 even 6 931.2.a.a.1.1 1
133.46 odd 6 931.2.f.c.324.1 2
133.65 odd 6 931.2.f.c.704.1 2
133.103 even 6 931.2.f.b.704.1 2
133.122 even 6 931.2.f.b.324.1 2
152.27 even 6 1216.2.a.b.1.1 1
152.141 odd 6 1216.2.a.o.1.1 1
209.65 even 6 2299.2.a.b.1.1 1
228.179 odd 6 2736.2.a.c.1.1 1
247.103 odd 6 3211.2.a.a.1.1 1
285.179 even 6 4275.2.a.i.1.1 1
323.84 odd 6 5491.2.a.b.1.1 1
380.179 even 6 7600.2.a.c.1.1 1
399.293 odd 6 8379.2.a.j.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
19.2.a.a.1.1 1 19.8 odd 6
171.2.a.b.1.1 1 57.8 even 6
304.2.a.f.1.1 1 76.27 even 6
361.2.a.b.1.1 1 19.11 even 3
361.2.c.a.68.1 2 1.1 even 1 trivial
361.2.c.a.292.1 2 19.7 even 3 inner
361.2.c.c.68.1 2 19.18 odd 2
361.2.c.c.292.1 2 19.12 odd 6
361.2.e.d.28.1 6 19.14 odd 18
361.2.e.d.54.1 6 19.13 odd 18
361.2.e.d.62.1 6 19.15 odd 18
361.2.e.d.99.1 6 19.3 odd 18
361.2.e.d.234.1 6 19.2 odd 18
361.2.e.d.245.1 6 19.10 odd 18
361.2.e.e.28.1 6 19.5 even 9
361.2.e.e.54.1 6 19.6 even 9
361.2.e.e.62.1 6 19.4 even 9
361.2.e.e.99.1 6 19.16 even 9
361.2.e.e.234.1 6 19.17 even 9
361.2.e.e.245.1 6 19.9 even 9
475.2.a.b.1.1 1 95.84 odd 6
475.2.b.a.324.1 2 95.8 even 12
475.2.b.a.324.2 2 95.27 even 12
931.2.a.a.1.1 1 133.27 even 6
931.2.f.b.324.1 2 133.122 even 6
931.2.f.b.704.1 2 133.103 even 6
931.2.f.c.324.1 2 133.46 odd 6
931.2.f.c.704.1 2 133.65 odd 6
1216.2.a.b.1.1 1 152.27 even 6
1216.2.a.o.1.1 1 152.141 odd 6
2299.2.a.b.1.1 1 209.65 even 6
2736.2.a.c.1.1 1 228.179 odd 6
3211.2.a.a.1.1 1 247.103 odd 6
3249.2.a.d.1.1 1 57.11 odd 6
4275.2.a.i.1.1 1 285.179 even 6
5491.2.a.b.1.1 1 323.84 odd 6
5776.2.a.c.1.1 1 76.11 odd 6
7600.2.a.c.1.1 1 380.179 even 6
8379.2.a.j.1.1 1 399.293 odd 6
9025.2.a.d.1.1 1 95.49 even 6