Properties

Label 361.2.a.g
Level $361$
Weight $2$
Character orbit 361.a
Self dual yes
Analytic conductor $2.883$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [361,2,Mod(1,361)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(361, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("361.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 361 = 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 361.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-3,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(2.88259951297\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{18})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 19)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 1) q^{2} + (\beta_{2} - 1) q^{3} + (\beta_{2} - 2 \beta_1 + 1) q^{4} + ( - \beta_{2} - 1) q^{5} + ( - \beta_{2} + 2) q^{6} - \beta_1 q^{7} + ( - 3 \beta_{2} + 2 \beta_1 - 2) q^{8} + ( - 3 \beta_{2} + \beta_1) q^{9}+ \cdots + (4 \beta_{2} - 5 \beta_1 - 6) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{2} - 3 q^{3} + 3 q^{4} - 3 q^{5} + 6 q^{6} - 6 q^{8} - 3 q^{12} - 6 q^{14} - 3 q^{15} + 3 q^{16} + 6 q^{17} - 3 q^{18} - 3 q^{20} - 3 q^{21} + 9 q^{22} - 6 q^{23} - 6 q^{24} - 6 q^{25} - 15 q^{26}+ \cdots - 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{18} + \zeta_{18}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.53209
−0.347296
1.87939
−2.53209 −0.652704 4.41147 −1.34730 1.65270 1.53209 −6.10607 −2.57398 3.41147
1.2 −1.34730 −2.87939 −0.184793 0.879385 3.87939 0.347296 2.94356 5.29086 −1.18479
1.3 0.879385 0.532089 −1.22668 −2.53209 0.467911 −1.87939 −2.83750 −2.71688 −2.22668
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 361.2.a.g 3
3.b odd 2 1 3249.2.a.z 3
4.b odd 2 1 5776.2.a.br 3
5.b even 2 1 9025.2.a.bd 3
19.b odd 2 1 361.2.a.h 3
19.c even 3 2 361.2.c.i 6
19.d odd 6 2 361.2.c.h 6
19.e even 9 2 19.2.e.a 6
19.e even 9 2 361.2.e.f 6
19.e even 9 2 361.2.e.g 6
19.f odd 18 2 361.2.e.a 6
19.f odd 18 2 361.2.e.b 6
19.f odd 18 2 361.2.e.h 6
57.d even 2 1 3249.2.a.s 3
57.l odd 18 2 171.2.u.c 6
76.d even 2 1 5776.2.a.bi 3
76.l odd 18 2 304.2.u.b 6
95.d odd 2 1 9025.2.a.x 3
95.p even 18 2 475.2.l.a 6
95.q odd 36 4 475.2.u.a 12
133.u even 9 2 931.2.v.b 6
133.w even 9 2 931.2.x.a 6
133.x odd 18 2 931.2.v.a 6
133.y odd 18 2 931.2.w.a 6
133.z odd 18 2 931.2.x.b 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
19.2.e.a 6 19.e even 9 2
171.2.u.c 6 57.l odd 18 2
304.2.u.b 6 76.l odd 18 2
361.2.a.g 3 1.a even 1 1 trivial
361.2.a.h 3 19.b odd 2 1
361.2.c.h 6 19.d odd 6 2
361.2.c.i 6 19.c even 3 2
361.2.e.a 6 19.f odd 18 2
361.2.e.b 6 19.f odd 18 2
361.2.e.f 6 19.e even 9 2
361.2.e.g 6 19.e even 9 2
361.2.e.h 6 19.f odd 18 2
475.2.l.a 6 95.p even 18 2
475.2.u.a 12 95.q odd 36 4
931.2.v.a 6 133.x odd 18 2
931.2.v.b 6 133.u even 9 2
931.2.w.a 6 133.y odd 18 2
931.2.x.a 6 133.w even 9 2
931.2.x.b 6 133.z odd 18 2
3249.2.a.s 3 57.d even 2 1
3249.2.a.z 3 3.b odd 2 1
5776.2.a.bi 3 76.d even 2 1
5776.2.a.br 3 4.b odd 2 1
9025.2.a.x 3 95.d odd 2 1
9025.2.a.bd 3 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(361))\):

\( T_{2}^{3} + 3T_{2}^{2} - 3 \) Copy content Toggle raw display
\( T_{3}^{3} + 3T_{3}^{2} - 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} + 3T^{2} - 3 \) Copy content Toggle raw display
$3$ \( T^{3} + 3T^{2} - 1 \) Copy content Toggle raw display
$5$ \( T^{3} + 3T^{2} - 3 \) Copy content Toggle raw display
$7$ \( T^{3} - 3T + 1 \) Copy content Toggle raw display
$11$ \( T^{3} - 9T - 9 \) Copy content Toggle raw display
$13$ \( T^{3} - 21T + 37 \) Copy content Toggle raw display
$17$ \( T^{3} - 6 T^{2} + \cdots - 3 \) Copy content Toggle raw display
$19$ \( T^{3} \) Copy content Toggle raw display
$23$ \( T^{3} + 6T^{2} - 24 \) Copy content Toggle raw display
$29$ \( T^{3} + 15 T^{2} + \cdots + 111 \) Copy content Toggle raw display
$31$ \( T^{3} + 9 T^{2} + \cdots - 53 \) Copy content Toggle raw display
$37$ \( T^{3} - 21T - 17 \) Copy content Toggle raw display
$41$ \( T^{3} + 12 T^{2} + \cdots - 111 \) Copy content Toggle raw display
$43$ \( T^{3} - 57T + 163 \) Copy content Toggle raw display
$47$ \( T^{3} + 6 T^{2} + \cdots + 3 \) Copy content Toggle raw display
$53$ \( T^{3} + 6 T^{2} + \cdots - 51 \) Copy content Toggle raw display
$59$ \( T^{3} + 21 T^{2} + \cdots + 267 \) Copy content Toggle raw display
$61$ \( T^{3} - 9 T^{2} + \cdots + 181 \) Copy content Toggle raw display
$67$ \( T^{3} - 18 T^{2} + \cdots + 424 \) Copy content Toggle raw display
$71$ \( T^{3} + 30 T^{2} + \cdots + 888 \) Copy content Toggle raw display
$73$ \( T^{3} - 48T + 64 \) Copy content Toggle raw display
$79$ \( T^{3} + 9 T^{2} + \cdots - 809 \) Copy content Toggle raw display
$83$ \( T^{3} - 189T + 459 \) Copy content Toggle raw display
$89$ \( T^{3} + 15 T^{2} + \cdots + 57 \) Copy content Toggle raw display
$97$ \( T^{3} - 15 T^{2} + \cdots + 127 \) Copy content Toggle raw display
show more
show less