Properties

Label 361.2.a.e
Level $361$
Weight $2$
Character orbit 361.a
Self dual yes
Analytic conductor $2.883$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [361,2,Mod(1,361)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(361, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("361.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 361 = 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 361.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(2.88259951297\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{5})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 2 \beta + 1) q^{2} + 2 q^{3} + 3 q^{4} + \beta q^{5} + ( - 4 \beta + 2) q^{6} + (2 \beta - 2) q^{7} + ( - 2 \beta + 1) q^{8} + q^{9} + ( - \beta - 2) q^{10} + (2 \beta + 2) q^{11} + 6 q^{12} + ( - 3 \beta + 3) q^{13}+ \cdots + (2 \beta + 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{3} + 6 q^{4} + q^{5} - 2 q^{7} + 2 q^{9} - 5 q^{10} + 6 q^{11} + 12 q^{12} + 3 q^{13} - 10 q^{14} + 2 q^{15} - 2 q^{16} - q^{17} + 3 q^{20} - 4 q^{21} - 10 q^{22} - 7 q^{25} + 15 q^{26} - 8 q^{27}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.61803
−0.618034
−2.23607 2.00000 3.00000 1.61803 −4.47214 1.23607 −2.23607 1.00000 −3.61803
1.2 2.23607 2.00000 3.00000 −0.618034 4.47214 −3.23607 2.23607 1.00000 −1.38197
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 361.2.a.e yes 2
3.b odd 2 1 3249.2.a.m 2
4.b odd 2 1 5776.2.a.r 2
5.b even 2 1 9025.2.a.o 2
19.b odd 2 1 361.2.a.d 2
19.c even 3 2 361.2.c.e 4
19.d odd 6 2 361.2.c.f 4
19.e even 9 6 361.2.e.k 12
19.f odd 18 6 361.2.e.l 12
57.d even 2 1 3249.2.a.n 2
76.d even 2 1 5776.2.a.bh 2
95.d odd 2 1 9025.2.a.r 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
361.2.a.d 2 19.b odd 2 1
361.2.a.e yes 2 1.a even 1 1 trivial
361.2.c.e 4 19.c even 3 2
361.2.c.f 4 19.d odd 6 2
361.2.e.k 12 19.e even 9 6
361.2.e.l 12 19.f odd 18 6
3249.2.a.m 2 3.b odd 2 1
3249.2.a.n 2 57.d even 2 1
5776.2.a.r 2 4.b odd 2 1
5776.2.a.bh 2 76.d even 2 1
9025.2.a.o 2 5.b even 2 1
9025.2.a.r 2 95.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(361))\):

\( T_{2}^{2} - 5 \) Copy content Toggle raw display
\( T_{3} - 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 5 \) Copy content Toggle raw display
$3$ \( (T - 2)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - T - 1 \) Copy content Toggle raw display
$7$ \( T^{2} + 2T - 4 \) Copy content Toggle raw display
$11$ \( T^{2} - 6T + 4 \) Copy content Toggle raw display
$13$ \( T^{2} - 3T - 9 \) Copy content Toggle raw display
$17$ \( T^{2} + T - 1 \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 20 \) Copy content Toggle raw display
$29$ \( T^{2} - 3T - 29 \) Copy content Toggle raw display
$31$ \( (T + 6)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} - 11T + 19 \) Copy content Toggle raw display
$41$ \( T^{2} + 3T - 29 \) Copy content Toggle raw display
$43$ \( T^{2} - 8T - 4 \) Copy content Toggle raw display
$47$ \( T^{2} - 14T + 44 \) Copy content Toggle raw display
$53$ \( T^{2} - 11T - 1 \) Copy content Toggle raw display
$59$ \( T^{2} - 2T - 4 \) Copy content Toggle raw display
$61$ \( T^{2} - 13T + 31 \) Copy content Toggle raw display
$67$ \( T^{2} - 8T - 4 \) Copy content Toggle raw display
$71$ \( T^{2} + 2T - 4 \) Copy content Toggle raw display
$73$ \( T^{2} + 9T - 81 \) Copy content Toggle raw display
$79$ \( (T - 2)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 6T - 36 \) Copy content Toggle raw display
$89$ \( T^{2} - T - 61 \) Copy content Toggle raw display
$97$ \( T^{2} + 11T - 1 \) Copy content Toggle raw display
show more
show less