Defining parameters
| Level: | \( N \) | \(=\) | \( 361 = 19^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 361.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 9 \) | ||
| Sturm bound: | \(63\) | ||
| Trace bound: | \(3\) | ||
| Distinguishing \(T_p\): | \(2\), \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(361))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 41 | 37 | 4 |
| Cusp forms | 22 | 20 | 2 |
| Eisenstein series | 19 | 17 | 2 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(19\) | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||
| \(+\) | \(18\) | \(16\) | \(2\) | \(9\) | \(8\) | \(1\) | \(9\) | \(8\) | \(1\) | |||
| \(-\) | \(23\) | \(21\) | \(2\) | \(13\) | \(12\) | \(1\) | \(10\) | \(9\) | \(1\) | |||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(361))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(361))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(361)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 2}\)