Properties

Label 3600.3.e.ba
Level $3600$
Weight $3$
Character orbit 3600.e
Analytic conductor $98.093$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3600,3,Mod(3151,3600)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3600.3151"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3600, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 3600 = 2^{4} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 3600.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,0,0,0,0,-16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(29)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(98.0928951697\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{5})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 2x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{7}\cdot 3\cdot 5 \)
Twist minimal: no (minimal twist has level 720)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{7} + \beta_{2} q^{11} - 4 q^{13} - \beta_{3} q^{17} - 4 \beta_1 q^{19} + 2 \beta_{2} q^{23} + 3 \beta_{3} q^{29} + 2 \beta_1 q^{31} + 16 q^{37} + 4 \beta_{3} q^{41} - 8 \beta_1 q^{43} - 2 \beta_{2} q^{47}+ \cdots + 14 q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 16 q^{13} + 64 q^{37} - 44 q^{49} - 232 q^{61} - 376 q^{73} + 56 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} + 2x^{2} + x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( -4\nu^{3} + 4\nu^{2} - 12\nu - 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( -10\nu^{3} + 20\nu^{2} - 20\nu \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -6\nu^{3} - 12 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( 5\beta_{3} + 3\beta_{2} - 15\beta _1 + 30 ) / 120 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -5\beta_{3} + 9\beta_{2} - 15\beta _1 - 90 ) / 120 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -\beta_{3} - 12 ) / 6 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3600\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(2801\) \(3151\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
3151.1
0.809017 1.40126i
−0.309017 0.535233i
−0.309017 + 0.535233i
0.809017 + 1.40126i
0 0 0 0 0 7.74597i 0 0 0
3151.2 0 0 0 0 0 7.74597i 0 0 0
3151.3 0 0 0 0 0 7.74597i 0 0 0
3151.4 0 0 0 0 0 7.74597i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
4.b odd 2 1 inner
12.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3600.3.e.ba 4
3.b odd 2 1 inner 3600.3.e.ba 4
4.b odd 2 1 inner 3600.3.e.ba 4
5.b even 2 1 720.3.e.d 4
5.c odd 4 2 3600.3.j.o 8
12.b even 2 1 inner 3600.3.e.ba 4
15.d odd 2 1 720.3.e.d 4
15.e even 4 2 3600.3.j.o 8
20.d odd 2 1 720.3.e.d 4
20.e even 4 2 3600.3.j.o 8
40.e odd 2 1 2880.3.e.c 4
40.f even 2 1 2880.3.e.c 4
60.h even 2 1 720.3.e.d 4
60.l odd 4 2 3600.3.j.o 8
120.i odd 2 1 2880.3.e.c 4
120.m even 2 1 2880.3.e.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
720.3.e.d 4 5.b even 2 1
720.3.e.d 4 15.d odd 2 1
720.3.e.d 4 20.d odd 2 1
720.3.e.d 4 60.h even 2 1
2880.3.e.c 4 40.e odd 2 1
2880.3.e.c 4 40.f even 2 1
2880.3.e.c 4 120.i odd 2 1
2880.3.e.c 4 120.m even 2 1
3600.3.e.ba 4 1.a even 1 1 trivial
3600.3.e.ba 4 3.b odd 2 1 inner
3600.3.e.ba 4 4.b odd 2 1 inner
3600.3.e.ba 4 12.b even 2 1 inner
3600.3.j.o 8 5.c odd 4 2
3600.3.j.o 8 15.e even 4 2
3600.3.j.o 8 20.e even 4 2
3600.3.j.o 8 60.l odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(3600, [\chi])\):

\( T_{7}^{2} + 60 \) Copy content Toggle raw display
\( T_{11}^{2} + 300 \) Copy content Toggle raw display
\( T_{13} + 4 \) Copy content Toggle raw display
\( T_{17}^{2} - 180 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( (T^{2} + 60)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} + 300)^{2} \) Copy content Toggle raw display
$13$ \( (T + 4)^{4} \) Copy content Toggle raw display
$17$ \( (T^{2} - 180)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + 960)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 1200)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} - 1620)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 240)^{2} \) Copy content Toggle raw display
$37$ \( (T - 16)^{4} \) Copy content Toggle raw display
$41$ \( (T^{2} - 2880)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} + 3840)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} + 1200)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} - 8820)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} + 300)^{2} \) Copy content Toggle raw display
$61$ \( (T + 58)^{4} \) Copy content Toggle raw display
$67$ \( (T^{2} + 2160)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} + 1200)^{2} \) Copy content Toggle raw display
$73$ \( (T + 94)^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} + 240)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} + 10800)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} - 720)^{2} \) Copy content Toggle raw display
$97$ \( (T - 14)^{4} \) Copy content Toggle raw display
show more
show less