Properties

Label 3600.3.c.i.449.8
Level $3600$
Weight $3$
Character 3600.449
Analytic conductor $98.093$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3600,3,Mod(449,3600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3600, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3600.449");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3600 = 2^{4} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 3600.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(98.0928951697\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.40960000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 7x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{29}]\)
Coefficient ring index: \( 2^{11}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 449.8
Root \(0.437016 + 0.437016i\) of defining polynomial
Character \(\chi\) \(=\) 3600.449
Dual form 3600.3.c.i.449.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+7.16228i q^{7} +5.42736i q^{11} +9.81139i q^{13} +12.2317 q^{17} +6.32456 q^{19} +12.0394 q^{23} -44.9881i q^{29} +58.2719 q^{31} -66.4605i q^{37} -16.4743i q^{41} +43.6228i q^{43} +40.0570 q^{47} -2.29822 q^{49} +13.2242 q^{53} -25.1519i q^{59} -35.6754 q^{61} +26.7018i q^{67} +92.7301i q^{71} +60.3246i q^{73} -38.8723 q^{77} -96.2192 q^{79} +79.1215 q^{83} -107.443i q^{89} -70.2719 q^{91} +1.07900i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 112 q^{31} + 184 q^{49} - 336 q^{61} - 112 q^{79} - 208 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3600\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(2801\) \(3151\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 7.16228i 1.02318i 0.859229 + 0.511591i \(0.170944\pi\)
−0.859229 + 0.511591i \(0.829056\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 5.42736i 0.493396i 0.969092 + 0.246698i \(0.0793456\pi\)
−0.969092 + 0.246698i \(0.920654\pi\)
\(12\) 0 0
\(13\) 9.81139i 0.754722i 0.926066 + 0.377361i \(0.123168\pi\)
−0.926066 + 0.377361i \(0.876832\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 12.2317 0.719511 0.359756 0.933047i \(-0.382860\pi\)
0.359756 + 0.933047i \(0.382860\pi\)
\(18\) 0 0
\(19\) 6.32456 0.332871 0.166436 0.986052i \(-0.446774\pi\)
0.166436 + 0.986052i \(0.446774\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 12.0394 0.523454 0.261727 0.965142i \(-0.415708\pi\)
0.261727 + 0.965142i \(0.415708\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 44.9881i − 1.55131i −0.631155 0.775657i \(-0.717419\pi\)
0.631155 0.775657i \(-0.282581\pi\)
\(30\) 0 0
\(31\) 58.2719 1.87974 0.939869 0.341535i \(-0.110947\pi\)
0.939869 + 0.341535i \(0.110947\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 66.4605i − 1.79623i −0.439761 0.898115i \(-0.644937\pi\)
0.439761 0.898115i \(-0.355063\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 16.4743i − 0.401813i −0.979610 0.200906i \(-0.935611\pi\)
0.979610 0.200906i \(-0.0643887\pi\)
\(42\) 0 0
\(43\) 43.6228i 1.01448i 0.861804 + 0.507242i \(0.169335\pi\)
−0.861804 + 0.507242i \(0.830665\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 40.0570 0.852276 0.426138 0.904658i \(-0.359874\pi\)
0.426138 + 0.904658i \(0.359874\pi\)
\(48\) 0 0
\(49\) −2.29822 −0.0469025
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 13.2242 0.249512 0.124756 0.992187i \(-0.460185\pi\)
0.124756 + 0.992187i \(0.460185\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 25.1519i − 0.426303i −0.977019 0.213151i \(-0.931627\pi\)
0.977019 0.213151i \(-0.0683728\pi\)
\(60\) 0 0
\(61\) −35.6754 −0.584843 −0.292422 0.956289i \(-0.594461\pi\)
−0.292422 + 0.956289i \(0.594461\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 26.7018i 0.398534i 0.979945 + 0.199267i \(0.0638561\pi\)
−0.979945 + 0.199267i \(0.936144\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 92.7301i 1.30606i 0.757333 + 0.653029i \(0.226502\pi\)
−0.757333 + 0.653029i \(0.773498\pi\)
\(72\) 0 0
\(73\) 60.3246i 0.826364i 0.910649 + 0.413182i \(0.135583\pi\)
−0.910649 + 0.413182i \(0.864417\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −38.8723 −0.504834
\(78\) 0 0
\(79\) −96.2192 −1.21796 −0.608982 0.793184i \(-0.708422\pi\)
−0.608982 + 0.793184i \(0.708422\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 79.1215 0.953271 0.476635 0.879101i \(-0.341856\pi\)
0.476635 + 0.879101i \(0.341856\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 107.443i − 1.20722i −0.797278 0.603612i \(-0.793728\pi\)
0.797278 0.603612i \(-0.206272\pi\)
\(90\) 0 0
\(91\) −70.2719 −0.772219
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 1.07900i 0.0111237i 0.999985 + 0.00556187i \(0.00177041\pi\)
−0.999985 + 0.00556187i \(0.998230\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 170.282i 1.68596i 0.537942 + 0.842982i \(0.319202\pi\)
−0.537942 + 0.842982i \(0.680798\pi\)
\(102\) 0 0
\(103\) 128.460i 1.24719i 0.781748 + 0.623595i \(0.214328\pi\)
−0.781748 + 0.623595i \(0.785672\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 76.3675 0.713715 0.356858 0.934159i \(-0.383848\pi\)
0.356858 + 0.934159i \(0.383848\pi\)
\(108\) 0 0
\(109\) 13.0790 0.119991 0.0599954 0.998199i \(-0.480891\pi\)
0.0599954 + 0.998199i \(0.480891\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −20.7170 −0.183336 −0.0916680 0.995790i \(-0.529220\pi\)
−0.0916680 + 0.995790i \(0.529220\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 87.6068i 0.736191i
\(120\) 0 0
\(121\) 91.5438 0.756560
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 38.0306i − 0.299454i −0.988727 0.149727i \(-0.952161\pi\)
0.988727 0.149727i \(-0.0478394\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 83.9409i − 0.640770i −0.947287 0.320385i \(-0.896188\pi\)
0.947287 0.320385i \(-0.103812\pi\)
\(132\) 0 0
\(133\) 45.2982i 0.340588i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −15.5936 −0.113822 −0.0569109 0.998379i \(-0.518125\pi\)
−0.0569109 + 0.998379i \(0.518125\pi\)
\(138\) 0 0
\(139\) 67.8420 0.488072 0.244036 0.969766i \(-0.421529\pi\)
0.244036 + 0.969766i \(0.421529\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −53.2499 −0.372377
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 233.426i 1.56662i 0.621634 + 0.783308i \(0.286469\pi\)
−0.621634 + 0.783308i \(0.713531\pi\)
\(150\) 0 0
\(151\) −185.351 −1.22749 −0.613745 0.789505i \(-0.710338\pi\)
−0.613745 + 0.789505i \(0.710338\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 111.276i 0.708765i 0.935100 + 0.354383i \(0.115309\pi\)
−0.935100 + 0.354383i \(0.884691\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 86.2298i 0.535589i
\(162\) 0 0
\(163\) − 118.763i − 0.728607i −0.931280 0.364304i \(-0.881307\pi\)
0.931280 0.364304i \(-0.118693\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 221.194 1.32452 0.662258 0.749276i \(-0.269598\pi\)
0.662258 + 0.749276i \(0.269598\pi\)
\(168\) 0 0
\(169\) 72.7367 0.430394
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 190.807 1.10293 0.551466 0.834198i \(-0.314069\pi\)
0.551466 + 0.834198i \(0.314069\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 58.1005i 0.324584i 0.986743 + 0.162292i \(0.0518886\pi\)
−0.986743 + 0.162292i \(0.948111\pi\)
\(180\) 0 0
\(181\) −162.921 −0.900116 −0.450058 0.892999i \(-0.648597\pi\)
−0.450058 + 0.892999i \(0.648597\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 66.3858i 0.355004i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 100.062i 0.523884i 0.965084 + 0.261942i \(0.0843630\pi\)
−0.965084 + 0.261942i \(0.915637\pi\)
\(192\) 0 0
\(193\) − 61.8947i − 0.320698i −0.987060 0.160349i \(-0.948738\pi\)
0.987060 0.160349i \(-0.0512619\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 24.8791 0.126290 0.0631449 0.998004i \(-0.479887\pi\)
0.0631449 + 0.998004i \(0.479887\pi\)
\(198\) 0 0
\(199\) −156.491 −0.786387 −0.393194 0.919456i \(-0.628630\pi\)
−0.393194 + 0.919456i \(0.628630\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 322.217 1.58728
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 34.3256i 0.164237i
\(210\) 0 0
\(211\) −237.789 −1.12696 −0.563482 0.826128i \(-0.690539\pi\)
−0.563482 + 0.826128i \(0.690539\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 417.359i 1.92332i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 120.010i 0.543031i
\(222\) 0 0
\(223\) 182.302i 0.817500i 0.912646 + 0.408750i \(0.134035\pi\)
−0.912646 + 0.408750i \(0.865965\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −406.078 −1.78889 −0.894444 0.447180i \(-0.852428\pi\)
−0.894444 + 0.447180i \(0.852428\pi\)
\(228\) 0 0
\(229\) 27.2982 0.119206 0.0596031 0.998222i \(-0.481016\pi\)
0.0596031 + 0.998222i \(0.481016\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 356.382 1.52954 0.764768 0.644306i \(-0.222854\pi\)
0.764768 + 0.644306i \(0.222854\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 271.690i − 1.13678i −0.822760 0.568389i \(-0.807567\pi\)
0.822760 0.568389i \(-0.192433\pi\)
\(240\) 0 0
\(241\) −224.438 −0.931280 −0.465640 0.884974i \(-0.654176\pi\)
−0.465640 + 0.884974i \(0.654176\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 62.0527i 0.251225i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 318.775i 1.27002i 0.772504 + 0.635010i \(0.219004\pi\)
−0.772504 + 0.635010i \(0.780996\pi\)
\(252\) 0 0
\(253\) 65.3423i 0.258270i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 371.975 1.44738 0.723688 0.690128i \(-0.242446\pi\)
0.723688 + 0.690128i \(0.242446\pi\)
\(258\) 0 0
\(259\) 476.009 1.83787
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 238.549 0.907031 0.453515 0.891248i \(-0.350170\pi\)
0.453515 + 0.891248i \(0.350170\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 125.871i − 0.467922i −0.972246 0.233961i \(-0.924831\pi\)
0.972246 0.233961i \(-0.0751688\pi\)
\(270\) 0 0
\(271\) 258.649 0.954425 0.477212 0.878788i \(-0.341647\pi\)
0.477212 + 0.878788i \(0.341647\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 227.715i − 0.822074i −0.911619 0.411037i \(-0.865167\pi\)
0.911619 0.411037i \(-0.134833\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 241.384i − 0.859016i −0.903063 0.429508i \(-0.858687\pi\)
0.903063 0.429508i \(-0.141313\pi\)
\(282\) 0 0
\(283\) − 208.333i − 0.736159i −0.929794 0.368080i \(-0.880015\pi\)
0.929794 0.368080i \(-0.119985\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 117.994 0.411128
\(288\) 0 0
\(289\) −139.386 −0.482304
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 201.693 0.688372 0.344186 0.938901i \(-0.388155\pi\)
0.344186 + 0.938901i \(0.388155\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 118.124i 0.395062i
\(300\) 0 0
\(301\) −312.438 −1.03800
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 342.824i 1.11669i 0.829608 + 0.558346i \(0.188564\pi\)
−0.829608 + 0.558346i \(0.811436\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 217.640i 0.699807i 0.936786 + 0.349903i \(0.113786\pi\)
−0.936786 + 0.349903i \(0.886214\pi\)
\(312\) 0 0
\(313\) 281.895i 0.900622i 0.892872 + 0.450311i \(0.148687\pi\)
−0.892872 + 0.450311i \(0.851313\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 15.4013 0.0485847 0.0242923 0.999705i \(-0.492267\pi\)
0.0242923 + 0.999705i \(0.492267\pi\)
\(318\) 0 0
\(319\) 244.167 0.765412
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 77.3600 0.239505
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 286.899i 0.872034i
\(330\) 0 0
\(331\) −375.517 −1.13449 −0.567247 0.823548i \(-0.691991\pi\)
−0.567247 + 0.823548i \(0.691991\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 188.114i − 0.558201i −0.960262 0.279101i \(-0.909964\pi\)
0.960262 0.279101i \(-0.0900363\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 316.262i 0.927456i
\(342\) 0 0
\(343\) 334.491i 0.975193i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −513.793 −1.48067 −0.740336 0.672237i \(-0.765334\pi\)
−0.740336 + 0.672237i \(0.765334\pi\)
\(348\) 0 0
\(349\) −112.535 −0.322451 −0.161225 0.986918i \(-0.551545\pi\)
−0.161225 + 0.986918i \(0.551545\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 428.172 1.21295 0.606475 0.795102i \(-0.292583\pi\)
0.606475 + 0.795102i \(0.292583\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) − 56.1961i − 0.156535i −0.996932 0.0782676i \(-0.975061\pi\)
0.996932 0.0782676i \(-0.0249389\pi\)
\(360\) 0 0
\(361\) −321.000 −0.889197
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 154.364i − 0.420610i −0.977636 0.210305i \(-0.932554\pi\)
0.977636 0.210305i \(-0.0674456\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 94.7151i 0.255297i
\(372\) 0 0
\(373\) 557.285i 1.49406i 0.664790 + 0.747030i \(0.268521\pi\)
−0.664790 + 0.747030i \(0.731479\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 441.396 1.17081
\(378\) 0 0
\(379\) 147.404 0.388928 0.194464 0.980910i \(-0.437703\pi\)
0.194464 + 0.980910i \(0.437703\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 736.619 1.92329 0.961644 0.274302i \(-0.0884467\pi\)
0.961644 + 0.274302i \(0.0884467\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 296.408i − 0.761975i −0.924580 0.380987i \(-0.875584\pi\)
0.924580 0.380987i \(-0.124416\pi\)
\(390\) 0 0
\(391\) 147.263 0.376631
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 457.057i 1.15128i 0.817704 + 0.575638i \(0.195246\pi\)
−0.817704 + 0.575638i \(0.804754\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 391.141i 0.975415i 0.873007 + 0.487707i \(0.162167\pi\)
−0.873007 + 0.487707i \(0.837833\pi\)
\(402\) 0 0
\(403\) 571.728i 1.41868i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 360.705 0.886253
\(408\) 0 0
\(409\) 411.842 1.00695 0.503474 0.864010i \(-0.332055\pi\)
0.503474 + 0.864010i \(0.332055\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 180.145 0.436186
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 653.447i − 1.55954i −0.626066 0.779770i \(-0.715336\pi\)
0.626066 0.779770i \(-0.284664\pi\)
\(420\) 0 0
\(421\) 125.035 0.296995 0.148497 0.988913i \(-0.452556\pi\)
0.148497 + 0.988913i \(0.452556\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 255.517i − 0.598401i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 397.208i 0.921596i 0.887505 + 0.460798i \(0.152437\pi\)
−0.887505 + 0.460798i \(0.847563\pi\)
\(432\) 0 0
\(433\) 560.114i 1.29357i 0.762674 + 0.646783i \(0.223886\pi\)
−0.762674 + 0.646783i \(0.776114\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 76.1441 0.174243
\(438\) 0 0
\(439\) −664.386 −1.51341 −0.756704 0.653758i \(-0.773191\pi\)
−0.756704 + 0.653758i \(0.773191\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −371.305 −0.838160 −0.419080 0.907949i \(-0.637647\pi\)
−0.419080 + 0.907949i \(0.637647\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) − 585.471i − 1.30395i −0.758243 0.651973i \(-0.773942\pi\)
0.758243 0.651973i \(-0.226058\pi\)
\(450\) 0 0
\(451\) 89.4121 0.198253
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 168.641i − 0.369017i −0.982831 0.184508i \(-0.940931\pi\)
0.982831 0.184508i \(-0.0590693\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 298.492i − 0.647487i −0.946145 0.323744i \(-0.895058\pi\)
0.946145 0.323744i \(-0.104942\pi\)
\(462\) 0 0
\(463\) 595.285i 1.28571i 0.765987 + 0.642856i \(0.222251\pi\)
−0.765987 + 0.642856i \(0.777749\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 623.655 1.33545 0.667725 0.744408i \(-0.267268\pi\)
0.667725 + 0.744408i \(0.267268\pi\)
\(468\) 0 0
\(469\) −191.246 −0.407773
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −236.756 −0.500542
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 131.857i 0.275276i 0.990483 + 0.137638i \(0.0439510\pi\)
−0.990483 + 0.137638i \(0.956049\pi\)
\(480\) 0 0
\(481\) 652.070 1.35565
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 41.8028i 0.0858375i 0.999079 + 0.0429187i \(0.0136657\pi\)
−0.999079 + 0.0429187i \(0.986334\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 178.817i − 0.364189i −0.983281 0.182095i \(-0.941712\pi\)
0.983281 0.182095i \(-0.0582877\pi\)
\(492\) 0 0
\(493\) − 550.280i − 1.11619i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −664.159 −1.33634
\(498\) 0 0
\(499\) −39.0961 −0.0783489 −0.0391744 0.999232i \(-0.512473\pi\)
−0.0391744 + 0.999232i \(0.512473\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −578.698 −1.15049 −0.575247 0.817980i \(-0.695094\pi\)
−0.575247 + 0.817980i \(0.695094\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 355.743i 0.698905i 0.936954 + 0.349453i \(0.113632\pi\)
−0.936954 + 0.349453i \(0.886368\pi\)
\(510\) 0 0
\(511\) −432.061 −0.845521
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 217.404i 0.420510i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 810.952i 1.55653i 0.627936 + 0.778265i \(0.283900\pi\)
−0.627936 + 0.778265i \(0.716100\pi\)
\(522\) 0 0
\(523\) − 720.483i − 1.37760i −0.724953 0.688798i \(-0.758139\pi\)
0.724953 0.688798i \(-0.241861\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 712.764 1.35249
\(528\) 0 0
\(529\) −384.052 −0.725996
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 161.636 0.303257
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 12.4733i − 0.0231415i
\(540\) 0 0
\(541\) 347.149 0.641680 0.320840 0.947133i \(-0.396035\pi\)
0.320840 + 0.947133i \(0.396035\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 720.833i − 1.31779i −0.752234 0.658896i \(-0.771024\pi\)
0.752234 0.658896i \(-0.228976\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) − 284.530i − 0.516388i
\(552\) 0 0
\(553\) − 689.149i − 1.24620i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 429.102 0.770380 0.385190 0.922837i \(-0.374136\pi\)
0.385190 + 0.922837i \(0.374136\pi\)
\(558\) 0 0
\(559\) −428.000 −0.765653
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 670.820 1.19151 0.595755 0.803166i \(-0.296853\pi\)
0.595755 + 0.803166i \(0.296853\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 368.663i 0.647914i 0.946072 + 0.323957i \(0.105013\pi\)
−0.946072 + 0.323957i \(0.894987\pi\)
\(570\) 0 0
\(571\) −124.289 −0.217669 −0.108834 0.994060i \(-0.534712\pi\)
−0.108834 + 0.994060i \(0.534712\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 504.236i − 0.873893i −0.899487 0.436947i \(-0.856060\pi\)
0.899487 0.436947i \(-0.143940\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 566.690i 0.975370i
\(582\) 0 0
\(583\) 71.7722i 0.123108i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 39.2256 0.0668238 0.0334119 0.999442i \(-0.489363\pi\)
0.0334119 + 0.999442i \(0.489363\pi\)
\(588\) 0 0
\(589\) 368.544 0.625711
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −621.670 −1.04835 −0.524174 0.851611i \(-0.675626\pi\)
−0.524174 + 0.851611i \(0.675626\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 1119.77i 1.86940i 0.355436 + 0.934701i \(0.384332\pi\)
−0.355436 + 0.934701i \(0.615668\pi\)
\(600\) 0 0
\(601\) −323.789 −0.538751 −0.269375 0.963035i \(-0.586817\pi\)
−0.269375 + 0.963035i \(0.586817\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 1025.63i 1.68966i 0.535031 + 0.844832i \(0.320300\pi\)
−0.535031 + 0.844832i \(0.679700\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 393.014i 0.643232i
\(612\) 0 0
\(613\) 904.153i 1.47496i 0.675367 + 0.737482i \(0.263985\pi\)
−0.675367 + 0.737482i \(0.736015\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −710.716 −1.15189 −0.575945 0.817488i \(-0.695366\pi\)
−0.575945 + 0.817488i \(0.695366\pi\)
\(618\) 0 0
\(619\) −583.737 −0.943032 −0.471516 0.881858i \(-0.656293\pi\)
−0.471516 + 0.881858i \(0.656293\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 769.537 1.23521
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 812.924i − 1.29241i
\(630\) 0 0
\(631\) 20.0968 0.0318491 0.0159246 0.999873i \(-0.494931\pi\)
0.0159246 + 0.999873i \(0.494931\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 22.5487i − 0.0353983i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 341.607i 0.532928i 0.963845 + 0.266464i \(0.0858553\pi\)
−0.963845 + 0.266464i \(0.914145\pi\)
\(642\) 0 0
\(643\) 469.693i 0.730471i 0.930915 + 0.365235i \(0.119011\pi\)
−0.930915 + 0.365235i \(0.880989\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 572.099 0.884234 0.442117 0.896957i \(-0.354228\pi\)
0.442117 + 0.896957i \(0.354228\pi\)
\(648\) 0 0
\(649\) 136.508 0.210336
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −213.540 −0.327014 −0.163507 0.986542i \(-0.552281\pi\)
−0.163507 + 0.986542i \(0.552281\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 420.983i − 0.638820i −0.947617 0.319410i \(-0.896515\pi\)
0.947617 0.319410i \(-0.103485\pi\)
\(660\) 0 0
\(661\) 434.272 0.656992 0.328496 0.944505i \(-0.393458\pi\)
0.328496 + 0.944505i \(0.393458\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 541.631i − 0.812041i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) − 193.623i − 0.288560i
\(672\) 0 0
\(673\) 72.7801i 0.108143i 0.998537 + 0.0540714i \(0.0172199\pi\)
−0.998537 + 0.0540714i \(0.982780\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 172.106 0.254219 0.127109 0.991889i \(-0.459430\pi\)
0.127109 + 0.991889i \(0.459430\pi\)
\(678\) 0 0
\(679\) −7.72811 −0.0113816
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −792.592 −1.16046 −0.580228 0.814454i \(-0.697037\pi\)
−0.580228 + 0.814454i \(0.697037\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 129.747i 0.188313i
\(690\) 0 0
\(691\) −154.851 −0.224097 −0.112049 0.993703i \(-0.535741\pi\)
−0.112049 + 0.993703i \(0.535741\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 201.509i − 0.289109i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 950.544i − 1.35598i −0.735070 0.677991i \(-0.762851\pi\)
0.735070 0.677991i \(-0.237149\pi\)
\(702\) 0 0
\(703\) − 420.333i − 0.597913i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1219.61 −1.72505
\(708\) 0 0
\(709\) −390.350 −0.550564 −0.275282 0.961363i \(-0.588771\pi\)
−0.275282 + 0.961363i \(0.588771\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 701.561 0.983956
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 655.227i 0.911303i 0.890158 + 0.455651i \(0.150594\pi\)
−0.890158 + 0.455651i \(0.849406\pi\)
\(720\) 0 0
\(721\) −920.070 −1.27610
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 1424.25i 1.95908i 0.201254 + 0.979539i \(0.435498\pi\)
−0.201254 + 0.979539i \(0.564502\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 533.580i 0.729932i
\(732\) 0 0
\(733\) − 946.749i − 1.29161i −0.763503 0.645805i \(-0.776522\pi\)
0.763503 0.645805i \(-0.223478\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −144.920 −0.196635
\(738\) 0 0
\(739\) 591.429 0.800310 0.400155 0.916447i \(-0.368956\pi\)
0.400155 + 0.916447i \(0.368956\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −732.202 −0.985467 −0.492734 0.870180i \(-0.664002\pi\)
−0.492734 + 0.870180i \(0.664002\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 546.965i 0.730261i
\(750\) 0 0
\(751\) 215.359 0.286764 0.143382 0.989667i \(-0.454202\pi\)
0.143382 + 0.989667i \(0.454202\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 276.258i − 0.364938i −0.983212 0.182469i \(-0.941591\pi\)
0.983212 0.182469i \(-0.0584090\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 893.373i − 1.17395i −0.809606 0.586973i \(-0.800319\pi\)
0.809606 0.586973i \(-0.199681\pi\)
\(762\) 0 0
\(763\) 93.6754i 0.122773i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 246.775 0.321740
\(768\) 0 0
\(769\) −284.316 −0.369722 −0.184861 0.982765i \(-0.559183\pi\)
−0.184861 + 0.982765i \(0.559183\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −1059.64 −1.37081 −0.685405 0.728162i \(-0.740375\pi\)
−0.685405 + 0.728162i \(0.740375\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 104.193i − 0.133752i
\(780\) 0 0
\(781\) −503.280 −0.644404
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 875.517i − 1.11247i −0.831024 0.556237i \(-0.812245\pi\)
0.831024 0.556237i \(-0.187755\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) − 148.381i − 0.187586i
\(792\) 0 0
\(793\) − 350.026i − 0.441394i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −742.449 −0.931555 −0.465777 0.884902i \(-0.654225\pi\)
−0.465777 + 0.884902i \(0.654225\pi\)
\(798\) 0 0
\(799\) 489.964 0.613222
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −327.403 −0.407725
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 113.720i 0.140568i 0.997527 + 0.0702842i \(0.0223906\pi\)
−0.997527 + 0.0702842i \(0.977609\pi\)
\(810\) 0 0
\(811\) 1466.03 1.80769 0.903844 0.427863i \(-0.140733\pi\)
0.903844 + 0.427863i \(0.140733\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 275.895i 0.337692i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 550.073i − 0.670003i −0.942218 0.335002i \(-0.891263\pi\)
0.942218 0.335002i \(-0.108737\pi\)
\(822\) 0 0
\(823\) − 1392.51i − 1.69199i −0.533187 0.845997i \(-0.679006\pi\)
0.533187 0.845997i \(-0.320994\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −955.922 −1.15589 −0.577945 0.816075i \(-0.696145\pi\)
−0.577945 + 0.816075i \(0.696145\pi\)
\(828\) 0 0
\(829\) 1652.69 1.99360 0.996798 0.0799552i \(-0.0254777\pi\)
0.996798 + 0.0799552i \(0.0254777\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −28.1111 −0.0337469
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 1568.11i 1.86903i 0.355927 + 0.934514i \(0.384165\pi\)
−0.355927 + 0.934514i \(0.615835\pi\)
\(840\) 0 0
\(841\) −1182.93 −1.40657
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 655.662i 0.774099i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 800.147i − 0.940243i
\(852\) 0 0
\(853\) − 651.232i − 0.763461i −0.924274 0.381730i \(-0.875328\pi\)
0.924274 0.381730i \(-0.124672\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 299.131 0.349044 0.174522 0.984653i \(-0.444162\pi\)
0.174522 + 0.984653i \(0.444162\pi\)
\(858\) 0 0
\(859\) 1095.72 1.27558 0.637788 0.770212i \(-0.279850\pi\)
0.637788 + 0.770212i \(0.279850\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1221.95 1.41593 0.707965 0.706247i \(-0.249613\pi\)
0.707965 + 0.706247i \(0.249613\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) − 522.216i − 0.600939i
\(870\) 0 0
\(871\) −261.982 −0.300782
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 766.399i − 0.873887i −0.899489 0.436944i \(-0.856061\pi\)
0.899489 0.436944i \(-0.143939\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) − 310.097i − 0.351983i −0.984392 0.175992i \(-0.943687\pi\)
0.984392 0.175992i \(-0.0563132\pi\)
\(882\) 0 0
\(883\) 122.236i 0.138433i 0.997602 + 0.0692165i \(0.0220499\pi\)
−0.997602 + 0.0692165i \(0.977950\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −265.444 −0.299261 −0.149630 0.988742i \(-0.547808\pi\)
−0.149630 + 0.988742i \(0.547808\pi\)
\(888\) 0 0
\(889\) 272.386 0.306396
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 253.343 0.283698
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 2621.54i − 2.91606i
\(900\) 0 0
\(901\) 161.754 0.179527
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 672.622i 0.741590i 0.928715 + 0.370795i \(0.120915\pi\)
−0.928715 + 0.370795i \(0.879085\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) − 1402.48i − 1.53949i −0.638350 0.769746i \(-0.720383\pi\)
0.638350 0.769746i \(-0.279617\pi\)
\(912\) 0 0
\(913\) 429.421i 0.470340i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 601.208 0.655625
\(918\) 0 0
\(919\) −338.255 −0.368068 −0.184034 0.982920i \(-0.558916\pi\)
−0.184034 + 0.982920i \(0.558916\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −909.811 −0.985711
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 148.207i − 0.159533i −0.996814 0.0797667i \(-0.974582\pi\)
0.996814 0.0797667i \(-0.0254175\pi\)
\(930\) 0 0
\(931\) −14.5352 −0.0156125
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 1416.72i 1.51197i 0.654587 + 0.755987i \(0.272843\pi\)
−0.654587 + 0.755987i \(0.727157\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 1398.92i − 1.48663i −0.668939 0.743317i \(-0.733251\pi\)
0.668939 0.743317i \(-0.266749\pi\)
\(942\) 0 0
\(943\) − 198.342i − 0.210330i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1050.57 −1.10937 −0.554686 0.832060i \(-0.687161\pi\)
−0.554686 + 0.832060i \(0.687161\pi\)
\(948\) 0 0
\(949\) −591.868 −0.623675
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 551.928 0.579148 0.289574 0.957156i \(-0.406486\pi\)
0.289574 + 0.957156i \(0.406486\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) − 111.686i − 0.116461i
\(960\) 0 0
\(961\) 2434.61 2.53342
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 357.093i − 0.369279i −0.982806 0.184639i \(-0.940888\pi\)
0.982806 0.184639i \(-0.0591117\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 308.206i − 0.317411i −0.987326 0.158705i \(-0.949268\pi\)
0.987326 0.158705i \(-0.0507320\pi\)
\(972\) 0 0
\(973\) 485.903i 0.499387i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 253.280 0.259243 0.129621 0.991564i \(-0.458624\pi\)
0.129621 + 0.991564i \(0.458624\pi\)
\(978\) 0 0
\(979\) 583.132 0.595640
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 1068.73 1.08722 0.543609 0.839339i \(-0.317058\pi\)
0.543609 + 0.839339i \(0.317058\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 525.194i 0.531035i
\(990\) 0 0
\(991\) −280.631 −0.283179 −0.141590 0.989925i \(-0.545221\pi\)
−0.141590 + 0.989925i \(0.545221\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 356.574i 0.357647i 0.983881 + 0.178824i \(0.0572292\pi\)
−0.983881 + 0.178824i \(0.942771\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3600.3.c.i.449.8 8
3.2 odd 2 inner 3600.3.c.i.449.7 8
4.3 odd 2 225.3.d.b.224.1 8
5.2 odd 4 720.3.l.a.161.1 4
5.3 odd 4 3600.3.l.v.1601.4 4
5.4 even 2 inner 3600.3.c.i.449.2 8
12.11 even 2 225.3.d.b.224.7 8
15.2 even 4 720.3.l.a.161.3 4
15.8 even 4 3600.3.l.v.1601.3 4
15.14 odd 2 inner 3600.3.c.i.449.1 8
20.3 even 4 225.3.c.c.26.4 4
20.7 even 4 45.3.c.a.26.1 4
20.19 odd 2 225.3.d.b.224.8 8
40.27 even 4 2880.3.l.g.1601.4 4
40.37 odd 4 2880.3.l.c.1601.3 4
60.23 odd 4 225.3.c.c.26.1 4
60.47 odd 4 45.3.c.a.26.4 yes 4
60.59 even 2 225.3.d.b.224.2 8
120.77 even 4 2880.3.l.c.1601.1 4
120.107 odd 4 2880.3.l.g.1601.2 4
180.7 even 12 405.3.i.d.296.1 8
180.47 odd 12 405.3.i.d.296.4 8
180.67 even 12 405.3.i.d.26.4 8
180.167 odd 12 405.3.i.d.26.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.3.c.a.26.1 4 20.7 even 4
45.3.c.a.26.4 yes 4 60.47 odd 4
225.3.c.c.26.1 4 60.23 odd 4
225.3.c.c.26.4 4 20.3 even 4
225.3.d.b.224.1 8 4.3 odd 2
225.3.d.b.224.2 8 60.59 even 2
225.3.d.b.224.7 8 12.11 even 2
225.3.d.b.224.8 8 20.19 odd 2
405.3.i.d.26.1 8 180.167 odd 12
405.3.i.d.26.4 8 180.67 even 12
405.3.i.d.296.1 8 180.7 even 12
405.3.i.d.296.4 8 180.47 odd 12
720.3.l.a.161.1 4 5.2 odd 4
720.3.l.a.161.3 4 15.2 even 4
2880.3.l.c.1601.1 4 120.77 even 4
2880.3.l.c.1601.3 4 40.37 odd 4
2880.3.l.g.1601.2 4 120.107 odd 4
2880.3.l.g.1601.4 4 40.27 even 4
3600.3.c.i.449.1 8 15.14 odd 2 inner
3600.3.c.i.449.2 8 5.4 even 2 inner
3600.3.c.i.449.7 8 3.2 odd 2 inner
3600.3.c.i.449.8 8 1.1 even 1 trivial
3600.3.l.v.1601.3 4 15.8 even 4
3600.3.l.v.1601.4 4 5.3 odd 4