Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [3600,3,Mod(449,3600)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3600, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 1, 1]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3600.449");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 3600 = 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 3600.c (of order \(2\), degree \(1\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(98.0928951697\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Coefficient field: | 8.0.40960000.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{8} + 7x^{4} + 1 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{29}]\) |
Coefficient ring index: | \( 2^{11}\cdot 3^{2} \) |
Twist minimal: | no (minimal twist has level 45) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
Embedding invariants
Embedding label | 449.8 | ||
Root | \(0.437016 + 0.437016i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 3600.449 |
Dual form | 3600.3.c.i.449.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3600\mathbb{Z}\right)^\times\).
\(n\) | \(577\) | \(901\) | \(2801\) | \(3151\) |
\(\chi(n)\) | \(-1\) | \(1\) | \(-1\) | \(1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 0 | 0 | ||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 7.16228i | 1.02318i | 0.859229 | + | 0.511591i | \(0.170944\pi\) | ||||
−0.859229 | + | 0.511591i | \(0.829056\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 5.42736i | 0.493396i | 0.969092 | + | 0.246698i | \(0.0793456\pi\) | ||||
−0.969092 | + | 0.246698i | \(0.920654\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 9.81139i | 0.754722i | 0.926066 | + | 0.377361i | \(0.123168\pi\) | ||||
−0.926066 | + | 0.377361i | \(0.876832\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 12.2317 | 0.719511 | 0.359756 | − | 0.933047i | \(-0.382860\pi\) | ||||
0.359756 | + | 0.933047i | \(0.382860\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 6.32456 | 0.332871 | 0.166436 | − | 0.986052i | \(-0.446774\pi\) | ||||
0.166436 | + | 0.986052i | \(0.446774\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 12.0394 | 0.523454 | 0.261727 | − | 0.965142i | \(-0.415708\pi\) | ||||
0.261727 | + | 0.965142i | \(0.415708\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 0 | 0 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | − 44.9881i | − 1.55131i | −0.631155 | − | 0.775657i | \(-0.717419\pi\) | ||||
0.631155 | − | 0.775657i | \(-0.282581\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 58.2719 | 1.87974 | 0.939869 | − | 0.341535i | \(-0.110947\pi\) | ||||
0.939869 | + | 0.341535i | \(0.110947\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | − 66.4605i | − 1.79623i | −0.439761 | − | 0.898115i | \(-0.644937\pi\) | ||||
0.439761 | − | 0.898115i | \(-0.355063\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | − 16.4743i | − 0.401813i | −0.979610 | − | 0.200906i | \(-0.935611\pi\) | ||||
0.979610 | − | 0.200906i | \(-0.0643887\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 43.6228i | 1.01448i | 0.861804 | + | 0.507242i | \(0.169335\pi\) | ||||
−0.861804 | + | 0.507242i | \(0.830665\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 40.0570 | 0.852276 | 0.426138 | − | 0.904658i | \(-0.359874\pi\) | ||||
0.426138 | + | 0.904658i | \(0.359874\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | −2.29822 | −0.0469025 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | 13.2242 | 0.249512 | 0.124756 | − | 0.992187i | \(-0.460185\pi\) | ||||
0.124756 | + | 0.992187i | \(0.460185\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | − 25.1519i | − 0.426303i | −0.977019 | − | 0.213151i | \(-0.931627\pi\) | ||||
0.977019 | − | 0.213151i | \(-0.0683728\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | −35.6754 | −0.584843 | −0.292422 | − | 0.956289i | \(-0.594461\pi\) | ||||
−0.292422 | + | 0.956289i | \(0.594461\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | 26.7018i | 0.398534i | 0.979945 | + | 0.199267i | \(0.0638561\pi\) | ||||
−0.979945 | + | 0.199267i | \(0.936144\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 92.7301i | 1.30606i | 0.757333 | + | 0.653029i | \(0.226502\pi\) | ||||
−0.757333 | + | 0.653029i | \(0.773498\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 60.3246i | 0.826364i | 0.910649 | + | 0.413182i | \(0.135583\pi\) | ||||
−0.910649 | + | 0.413182i | \(0.864417\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | −38.8723 | −0.504834 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | −96.2192 | −1.21796 | −0.608982 | − | 0.793184i | \(-0.708422\pi\) | ||||
−0.608982 | + | 0.793184i | \(0.708422\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 79.1215 | 0.953271 | 0.476635 | − | 0.879101i | \(-0.341856\pi\) | ||||
0.476635 | + | 0.879101i | \(0.341856\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | − 107.443i | − 1.20722i | −0.797278 | − | 0.603612i | \(-0.793728\pi\) | ||||
0.797278 | − | 0.603612i | \(-0.206272\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | −70.2719 | −0.772219 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 1.07900i | 0.0111237i | 0.999985 | + | 0.00556187i | \(0.00177041\pi\) | ||||
−0.999985 | + | 0.00556187i | \(0.998230\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 170.282i | 1.68596i | 0.537942 | + | 0.842982i | \(0.319202\pi\) | ||||
−0.537942 | + | 0.842982i | \(0.680798\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 128.460i | 1.24719i | 0.781748 | + | 0.623595i | \(0.214328\pi\) | ||||
−0.781748 | + | 0.623595i | \(0.785672\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 76.3675 | 0.713715 | 0.356858 | − | 0.934159i | \(-0.383848\pi\) | ||||
0.356858 | + | 0.934159i | \(0.383848\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | 13.0790 | 0.119991 | 0.0599954 | − | 0.998199i | \(-0.480891\pi\) | ||||
0.0599954 | + | 0.998199i | \(0.480891\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | −20.7170 | −0.183336 | −0.0916680 | − | 0.995790i | \(-0.529220\pi\) | ||||
−0.0916680 | + | 0.995790i | \(0.529220\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 87.6068i | 0.736191i | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | 91.5438 | 0.756560 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | − 38.0306i | − 0.299454i | −0.988727 | − | 0.149727i | \(-0.952161\pi\) | ||||
0.988727 | − | 0.149727i | \(-0.0478394\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | − 83.9409i | − 0.640770i | −0.947287 | − | 0.320385i | \(-0.896188\pi\) | ||||
0.947287 | − | 0.320385i | \(-0.103812\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 45.2982i | 0.340588i | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | −15.5936 | −0.113822 | −0.0569109 | − | 0.998379i | \(-0.518125\pi\) | ||||
−0.0569109 | + | 0.998379i | \(0.518125\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | 67.8420 | 0.488072 | 0.244036 | − | 0.969766i | \(-0.421529\pi\) | ||||
0.244036 | + | 0.969766i | \(0.421529\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | −53.2499 | −0.372377 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | 233.426i | 1.56662i | 0.621634 | + | 0.783308i | \(0.286469\pi\) | ||||
−0.621634 | + | 0.783308i | \(0.713531\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | −185.351 | −1.22749 | −0.613745 | − | 0.789505i | \(-0.710338\pi\) | ||||
−0.613745 | + | 0.789505i | \(0.710338\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | 111.276i | 0.708765i | 0.935100 | + | 0.354383i | \(0.115309\pi\) | ||||
−0.935100 | + | 0.354383i | \(0.884691\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 86.2298i | 0.535589i | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | − 118.763i | − 0.728607i | −0.931280 | − | 0.364304i | \(-0.881307\pi\) | ||||
0.931280 | − | 0.364304i | \(-0.118693\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 221.194 | 1.32452 | 0.662258 | − | 0.749276i | \(-0.269598\pi\) | ||||
0.662258 | + | 0.749276i | \(0.269598\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 72.7367 | 0.430394 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | 190.807 | 1.10293 | 0.551466 | − | 0.834198i | \(-0.314069\pi\) | ||||
0.551466 | + | 0.834198i | \(0.314069\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 58.1005i | 0.324584i | 0.986743 | + | 0.162292i | \(0.0518886\pi\) | ||||
−0.986743 | + | 0.162292i | \(0.948111\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | −162.921 | −0.900116 | −0.450058 | − | 0.892999i | \(-0.648597\pi\) | ||||
−0.450058 | + | 0.892999i | \(0.648597\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 66.3858i | 0.355004i | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 100.062i | 0.523884i | 0.965084 | + | 0.261942i | \(0.0843630\pi\) | ||||
−0.965084 | + | 0.261942i | \(0.915637\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | − 61.8947i | − 0.320698i | −0.987060 | − | 0.160349i | \(-0.948738\pi\) | ||||
0.987060 | − | 0.160349i | \(-0.0512619\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 24.8791 | 0.126290 | 0.0631449 | − | 0.998004i | \(-0.479887\pi\) | ||||
0.0631449 | + | 0.998004i | \(0.479887\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | −156.491 | −0.786387 | −0.393194 | − | 0.919456i | \(-0.628630\pi\) | ||||
−0.393194 | + | 0.919456i | \(0.628630\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 322.217 | 1.58728 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 34.3256i | 0.164237i | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | −237.789 | −1.12696 | −0.563482 | − | 0.826128i | \(-0.690539\pi\) | ||||
−0.563482 | + | 0.826128i | \(0.690539\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 417.359i | 1.92332i | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 120.010i | 0.543031i | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | 182.302i | 0.817500i | 0.912646 | + | 0.408750i | \(0.134035\pi\) | ||||
−0.912646 | + | 0.408750i | \(0.865965\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | −406.078 | −1.78889 | −0.894444 | − | 0.447180i | \(-0.852428\pi\) | ||||
−0.894444 | + | 0.447180i | \(0.852428\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 27.2982 | 0.119206 | 0.0596031 | − | 0.998222i | \(-0.481016\pi\) | ||||
0.0596031 | + | 0.998222i | \(0.481016\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 356.382 | 1.52954 | 0.764768 | − | 0.644306i | \(-0.222854\pi\) | ||||
0.764768 | + | 0.644306i | \(0.222854\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | − 271.690i | − 1.13678i | −0.822760 | − | 0.568389i | \(-0.807567\pi\) | ||||
0.822760 | − | 0.568389i | \(-0.192433\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | −224.438 | −0.931280 | −0.465640 | − | 0.884974i | \(-0.654176\pi\) | ||||
−0.465640 | + | 0.884974i | \(0.654176\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 62.0527i | 0.251225i | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 318.775i | 1.27002i | 0.772504 | + | 0.635010i | \(0.219004\pi\) | ||||
−0.772504 | + | 0.635010i | \(0.780996\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 65.3423i | 0.258270i | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | 371.975 | 1.44738 | 0.723688 | − | 0.690128i | \(-0.242446\pi\) | ||||
0.723688 | + | 0.690128i | \(0.242446\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 476.009 | 1.83787 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 238.549 | 0.907031 | 0.453515 | − | 0.891248i | \(-0.350170\pi\) | ||||
0.453515 | + | 0.891248i | \(0.350170\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | − 125.871i | − 0.467922i | −0.972246 | − | 0.233961i | \(-0.924831\pi\) | ||||
0.972246 | − | 0.233961i | \(-0.0751688\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 258.649 | 0.954425 | 0.477212 | − | 0.878788i | \(-0.341647\pi\) | ||||
0.477212 | + | 0.878788i | \(0.341647\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | − 227.715i | − 0.822074i | −0.911619 | − | 0.411037i | \(-0.865167\pi\) | ||||
0.911619 | − | 0.411037i | \(-0.134833\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | − 241.384i | − 0.859016i | −0.903063 | − | 0.429508i | \(-0.858687\pi\) | ||||
0.903063 | − | 0.429508i | \(-0.141313\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | − 208.333i | − 0.736159i | −0.929794 | − | 0.368080i | \(-0.880015\pi\) | ||||
0.929794 | − | 0.368080i | \(-0.119985\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 117.994 | 0.411128 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −139.386 | −0.482304 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | 201.693 | 0.688372 | 0.344186 | − | 0.938901i | \(-0.388155\pi\) | ||||
0.344186 | + | 0.938901i | \(0.388155\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 118.124i | 0.395062i | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | −312.438 | −1.03800 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 342.824i | 1.11669i | 0.829608 | + | 0.558346i | \(0.188564\pi\) | ||||
−0.829608 | + | 0.558346i | \(0.811436\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 217.640i | 0.699807i | 0.936786 | + | 0.349903i | \(0.113786\pi\) | ||||
−0.936786 | + | 0.349903i | \(0.886214\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | 281.895i | 0.900622i | 0.892872 | + | 0.450311i | \(0.148687\pi\) | ||||
−0.892872 | + | 0.450311i | \(0.851313\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | 15.4013 | 0.0485847 | 0.0242923 | − | 0.999705i | \(-0.492267\pi\) | ||||
0.0242923 | + | 0.999705i | \(0.492267\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 244.167 | 0.765412 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 77.3600 | 0.239505 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 286.899i | 0.872034i | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | −375.517 | −1.13449 | −0.567247 | − | 0.823548i | \(-0.691991\pi\) | ||||
−0.567247 | + | 0.823548i | \(0.691991\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | − 188.114i | − 0.558201i | −0.960262 | − | 0.279101i | \(-0.909964\pi\) | ||||
0.960262 | − | 0.279101i | \(-0.0900363\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 316.262i | 0.927456i | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 334.491i | 0.975193i | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | −513.793 | −1.48067 | −0.740336 | − | 0.672237i | \(-0.765334\pi\) | ||||
−0.740336 | + | 0.672237i | \(0.765334\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | −112.535 | −0.322451 | −0.161225 | − | 0.986918i | \(-0.551545\pi\) | ||||
−0.161225 | + | 0.986918i | \(0.551545\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 428.172 | 1.21295 | 0.606475 | − | 0.795102i | \(-0.292583\pi\) | ||||
0.606475 | + | 0.795102i | \(0.292583\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | − 56.1961i | − 0.156535i | −0.996932 | − | 0.0782676i | \(-0.975061\pi\) | ||||
0.996932 | − | 0.0782676i | \(-0.0249389\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −321.000 | −0.889197 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | − 154.364i | − 0.420610i | −0.977636 | − | 0.210305i | \(-0.932554\pi\) | ||||
0.977636 | − | 0.210305i | \(-0.0674456\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 94.7151i | 0.255297i | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | 557.285i | 1.49406i | 0.664790 | + | 0.747030i | \(0.268521\pi\) | ||||
−0.664790 | + | 0.747030i | \(0.731479\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 441.396 | 1.17081 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 147.404 | 0.388928 | 0.194464 | − | 0.980910i | \(-0.437703\pi\) | ||||
0.194464 | + | 0.980910i | \(0.437703\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 736.619 | 1.92329 | 0.961644 | − | 0.274302i | \(-0.0884467\pi\) | ||||
0.961644 | + | 0.274302i | \(0.0884467\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | − 296.408i | − 0.761975i | −0.924580 | − | 0.380987i | \(-0.875584\pi\) | ||||
0.924580 | − | 0.380987i | \(-0.124416\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 147.263 | 0.376631 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 457.057i | 1.15128i | 0.817704 | + | 0.575638i | \(0.195246\pi\) | ||||
−0.817704 | + | 0.575638i | \(0.804754\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | 391.141i | 0.975415i | 0.873007 | + | 0.487707i | \(0.162167\pi\) | ||||
−0.873007 | + | 0.487707i | \(0.837833\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 571.728i | 1.41868i | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 360.705 | 0.886253 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | 411.842 | 1.00695 | 0.503474 | − | 0.864010i | \(-0.332055\pi\) | ||||
0.503474 | + | 0.864010i | \(0.332055\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 180.145 | 0.436186 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | − 653.447i | − 1.55954i | −0.626066 | − | 0.779770i | \(-0.715336\pi\) | ||||
0.626066 | − | 0.779770i | \(-0.284664\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | 125.035 | 0.296995 | 0.148497 | − | 0.988913i | \(-0.452556\pi\) | ||||
0.148497 | + | 0.988913i | \(0.452556\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | − 255.517i | − 0.598401i | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 397.208i | 0.921596i | 0.887505 | + | 0.460798i | \(0.152437\pi\) | ||||
−0.887505 | + | 0.460798i | \(0.847563\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 560.114i | 1.29357i | 0.762674 | + | 0.646783i | \(0.223886\pi\) | ||||
−0.762674 | + | 0.646783i | \(0.776114\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 76.1441 | 0.174243 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | −664.386 | −1.51341 | −0.756704 | − | 0.653758i | \(-0.773191\pi\) | ||||
−0.756704 | + | 0.653758i | \(0.773191\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | −371.305 | −0.838160 | −0.419080 | − | 0.907949i | \(-0.637647\pi\) | ||||
−0.419080 | + | 0.907949i | \(0.637647\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | − 585.471i | − 1.30395i | −0.758243 | − | 0.651973i | \(-0.773942\pi\) | ||||
0.758243 | − | 0.651973i | \(-0.226058\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 89.4121 | 0.198253 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | − 168.641i | − 0.369017i | −0.982831 | − | 0.184508i | \(-0.940931\pi\) | ||||
0.982831 | − | 0.184508i | \(-0.0590693\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | − 298.492i | − 0.647487i | −0.946145 | − | 0.323744i | \(-0.895058\pi\) | ||||
0.946145 | − | 0.323744i | \(-0.104942\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | 595.285i | 1.28571i | 0.765987 | + | 0.642856i | \(0.222251\pi\) | ||||
−0.765987 | + | 0.642856i | \(0.777749\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | 623.655 | 1.33545 | 0.667725 | − | 0.744408i | \(-0.267268\pi\) | ||||
0.667725 | + | 0.744408i | \(0.267268\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | −191.246 | −0.407773 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | −236.756 | −0.500542 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 131.857i | 0.275276i | 0.990483 | + | 0.137638i | \(0.0439510\pi\) | ||||
−0.990483 | + | 0.137638i | \(0.956049\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 652.070 | 1.35565 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 41.8028i | 0.0858375i | 0.999079 | + | 0.0429187i | \(0.0136657\pi\) | ||||
−0.999079 | + | 0.0429187i | \(0.986334\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | − 178.817i | − 0.364189i | −0.983281 | − | 0.182095i | \(-0.941712\pi\) | ||||
0.983281 | − | 0.182095i | \(-0.0582877\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | − 550.280i | − 1.11619i | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | −664.159 | −1.33634 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | −39.0961 | −0.0783489 | −0.0391744 | − | 0.999232i | \(-0.512473\pi\) | ||||
−0.0391744 | + | 0.999232i | \(0.512473\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | −578.698 | −1.15049 | −0.575247 | − | 0.817980i | \(-0.695094\pi\) | ||||
−0.575247 | + | 0.817980i | \(0.695094\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | 355.743i | 0.698905i | 0.936954 | + | 0.349453i | \(0.113632\pi\) | ||||
−0.936954 | + | 0.349453i | \(0.886368\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | −432.061 | −0.845521 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 217.404i | 0.420510i | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 810.952i | 1.55653i | 0.627936 | + | 0.778265i | \(0.283900\pi\) | ||||
−0.627936 | + | 0.778265i | \(0.716100\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | − 720.483i | − 1.37760i | −0.724953 | − | 0.688798i | \(-0.758139\pi\) | ||||
0.724953 | − | 0.688798i | \(-0.241861\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 712.764 | 1.35249 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | −384.052 | −0.725996 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 161.636 | 0.303257 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | − 12.4733i | − 0.0231415i | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 347.149 | 0.641680 | 0.320840 | − | 0.947133i | \(-0.396035\pi\) | ||||
0.320840 | + | 0.947133i | \(0.396035\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | − 720.833i | − 1.31779i | −0.752234 | − | 0.658896i | \(-0.771024\pi\) | ||||
0.752234 | − | 0.658896i | \(-0.228976\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | − 284.530i | − 0.516388i | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | − 689.149i | − 1.24620i | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 429.102 | 0.770380 | 0.385190 | − | 0.922837i | \(-0.374136\pi\) | ||||
0.385190 | + | 0.922837i | \(0.374136\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | −428.000 | −0.765653 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 670.820 | 1.19151 | 0.595755 | − | 0.803166i | \(-0.296853\pi\) | ||||
0.595755 | + | 0.803166i | \(0.296853\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 368.663i | 0.647914i | 0.946072 | + | 0.323957i | \(0.105013\pi\) | ||||
−0.946072 | + | 0.323957i | \(0.894987\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | −124.289 | −0.217669 | −0.108834 | − | 0.994060i | \(-0.534712\pi\) | ||||
−0.108834 | + | 0.994060i | \(0.534712\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | − 504.236i | − 0.873893i | −0.899487 | − | 0.436947i | \(-0.856060\pi\) | ||||
0.899487 | − | 0.436947i | \(-0.143940\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 566.690i | 0.975370i | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 71.7722i | 0.123108i | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 39.2256 | 0.0668238 | 0.0334119 | − | 0.999442i | \(-0.489363\pi\) | ||||
0.0334119 | + | 0.999442i | \(0.489363\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 368.544 | 0.625711 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | −621.670 | −1.04835 | −0.524174 | − | 0.851611i | \(-0.675626\pi\) | ||||
−0.524174 | + | 0.851611i | \(0.675626\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 1119.77i | 1.86940i | 0.355436 | + | 0.934701i | \(0.384332\pi\) | ||||
−0.355436 | + | 0.934701i | \(0.615668\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | −323.789 | −0.538751 | −0.269375 | − | 0.963035i | \(-0.586817\pi\) | ||||
−0.269375 | + | 0.963035i | \(0.586817\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 1025.63i | 1.68966i | 0.535031 | + | 0.844832i | \(0.320300\pi\) | ||||
−0.535031 | + | 0.844832i | \(0.679700\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 393.014i | 0.643232i | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 904.153i | 1.47496i | 0.675367 | + | 0.737482i | \(0.263985\pi\) | ||||
−0.675367 | + | 0.737482i | \(0.736015\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | −710.716 | −1.15189 | −0.575945 | − | 0.817488i | \(-0.695366\pi\) | ||||
−0.575945 | + | 0.817488i | \(0.695366\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | −583.737 | −0.943032 | −0.471516 | − | 0.881858i | \(-0.656293\pi\) | ||||
−0.471516 | + | 0.881858i | \(0.656293\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 769.537 | 1.23521 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 0 | 0 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | − 812.924i | − 1.29241i | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 20.0968 | 0.0318491 | 0.0159246 | − | 0.999873i | \(-0.494931\pi\) | ||||
0.0159246 | + | 0.999873i | \(0.494931\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | − 22.5487i | − 0.0353983i | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | 341.607i | 0.532928i | 0.963845 | + | 0.266464i | \(0.0858553\pi\) | ||||
−0.963845 | + | 0.266464i | \(0.914145\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | 469.693i | 0.730471i | 0.930915 | + | 0.365235i | \(0.119011\pi\) | ||||
−0.930915 | + | 0.365235i | \(0.880989\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | 572.099 | 0.884234 | 0.442117 | − | 0.896957i | \(-0.354228\pi\) | ||||
0.442117 | + | 0.896957i | \(0.354228\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 136.508 | 0.210336 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | −213.540 | −0.327014 | −0.163507 | − | 0.986542i | \(-0.552281\pi\) | ||||
−0.163507 | + | 0.986542i | \(0.552281\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | − 420.983i | − 0.638820i | −0.947617 | − | 0.319410i | \(-0.896515\pi\) | ||||
0.947617 | − | 0.319410i | \(-0.103485\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 434.272 | 0.656992 | 0.328496 | − | 0.944505i | \(-0.393458\pi\) | ||||
0.328496 | + | 0.944505i | \(0.393458\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | − 541.631i | − 0.812041i | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | − 193.623i | − 0.288560i | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | 72.7801i | 0.108143i | 0.998537 | + | 0.0540714i | \(0.0172199\pi\) | ||||
−0.998537 | + | 0.0540714i | \(0.982780\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 172.106 | 0.254219 | 0.127109 | − | 0.991889i | \(-0.459430\pi\) | ||||
0.127109 | + | 0.991889i | \(0.459430\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | −7.72811 | −0.0113816 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | −792.592 | −1.16046 | −0.580228 | − | 0.814454i | \(-0.697037\pi\) | ||||
−0.580228 | + | 0.814454i | \(0.697037\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 129.747i | 0.188313i | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | −154.851 | −0.224097 | −0.112049 | − | 0.993703i | \(-0.535741\pi\) | ||||
−0.112049 | + | 0.993703i | \(0.535741\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | − 201.509i | − 0.289109i | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | − 950.544i | − 1.35598i | −0.735070 | − | 0.677991i | \(-0.762851\pi\) | ||||
0.735070 | − | 0.677991i | \(-0.237149\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | − 420.333i | − 0.597913i | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | −1219.61 | −1.72505 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | −390.350 | −0.550564 | −0.275282 | − | 0.961363i | \(-0.588771\pi\) | ||||
−0.275282 | + | 0.961363i | \(0.588771\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 701.561 | 0.983956 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 655.227i | 0.911303i | 0.890158 | + | 0.455651i | \(0.150594\pi\) | ||||
−0.890158 | + | 0.455651i | \(0.849406\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | −920.070 | −1.27610 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 1424.25i | 1.95908i | 0.201254 | + | 0.979539i | \(0.435498\pi\) | ||||
−0.201254 | + | 0.979539i | \(0.564502\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 533.580i | 0.729932i | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | − 946.749i | − 1.29161i | −0.763503 | − | 0.645805i | \(-0.776522\pi\) | ||||
0.763503 | − | 0.645805i | \(-0.223478\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | −144.920 | −0.196635 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | 591.429 | 0.800310 | 0.400155 | − | 0.916447i | \(-0.368956\pi\) | ||||
0.400155 | + | 0.916447i | \(0.368956\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | −732.202 | −0.985467 | −0.492734 | − | 0.870180i | \(-0.664002\pi\) | ||||
−0.492734 | + | 0.870180i | \(0.664002\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 546.965i | 0.730261i | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 215.359 | 0.286764 | 0.143382 | − | 0.989667i | \(-0.454202\pi\) | ||||
0.143382 | + | 0.989667i | \(0.454202\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | − 276.258i | − 0.364938i | −0.983212 | − | 0.182469i | \(-0.941591\pi\) | ||||
0.983212 | − | 0.182469i | \(-0.0584090\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | − 893.373i | − 1.17395i | −0.809606 | − | 0.586973i | \(-0.800319\pi\) | ||||
0.809606 | − | 0.586973i | \(-0.199681\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 93.6754i | 0.122773i | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 246.775 | 0.321740 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | −284.316 | −0.369722 | −0.184861 | − | 0.982765i | \(-0.559183\pi\) | ||||
−0.184861 | + | 0.982765i | \(0.559183\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | −1059.64 | −1.37081 | −0.685405 | − | 0.728162i | \(-0.740375\pi\) | ||||
−0.685405 | + | 0.728162i | \(0.740375\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 0 | 0 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | − 104.193i | − 0.133752i | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | −503.280 | −0.644404 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | − 875.517i | − 1.11247i | −0.831024 | − | 0.556237i | \(-0.812245\pi\) | ||||
0.831024 | − | 0.556237i | \(-0.187755\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | − 148.381i | − 0.187586i | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | − 350.026i | − 0.441394i | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | −742.449 | −0.931555 | −0.465777 | − | 0.884902i | \(-0.654225\pi\) | ||||
−0.465777 | + | 0.884902i | \(0.654225\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 489.964 | 0.613222 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | −327.403 | −0.407725 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | 113.720i | 0.140568i | 0.997527 | + | 0.0702842i | \(0.0223906\pi\) | ||||
−0.997527 | + | 0.0702842i | \(0.977609\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | 1466.03 | 1.80769 | 0.903844 | − | 0.427863i | \(-0.140733\pi\) | ||||
0.903844 | + | 0.427863i | \(0.140733\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 0 | 0 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 275.895i | 0.337692i | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | − 550.073i | − 0.670003i | −0.942218 | − | 0.335002i | \(-0.891263\pi\) | ||||
0.942218 | − | 0.335002i | \(-0.108737\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | − 1392.51i | − 1.69199i | −0.533187 | − | 0.845997i | \(-0.679006\pi\) | ||||
0.533187 | − | 0.845997i | \(-0.320994\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | −955.922 | −1.15589 | −0.577945 | − | 0.816075i | \(-0.696145\pi\) | ||||
−0.577945 | + | 0.816075i | \(0.696145\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | 1652.69 | 1.99360 | 0.996798 | − | 0.0799552i | \(-0.0254777\pi\) | ||||
0.996798 | + | 0.0799552i | \(0.0254777\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | −28.1111 | −0.0337469 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | 1568.11i | 1.86903i | 0.355927 | + | 0.934514i | \(0.384165\pi\) | ||||
−0.355927 | + | 0.934514i | \(0.615835\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | −1182.93 | −1.40657 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 655.662i | 0.774099i | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | − 800.147i | − 0.940243i | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | − 651.232i | − 0.763461i | −0.924274 | − | 0.381730i | \(-0.875328\pi\) | ||||
0.924274 | − | 0.381730i | \(-0.124672\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | 299.131 | 0.349044 | 0.174522 | − | 0.984653i | \(-0.444162\pi\) | ||||
0.174522 | + | 0.984653i | \(0.444162\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | 1095.72 | 1.27558 | 0.637788 | − | 0.770212i | \(-0.279850\pi\) | ||||
0.637788 | + | 0.770212i | \(0.279850\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | 1221.95 | 1.41593 | 0.707965 | − | 0.706247i | \(-0.249613\pi\) | ||||
0.707965 | + | 0.706247i | \(0.249613\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | − 522.216i | − 0.600939i | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | −261.982 | −0.300782 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | − 766.399i | − 0.873887i | −0.899489 | − | 0.436944i | \(-0.856061\pi\) | ||||
0.899489 | − | 0.436944i | \(-0.143939\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | − 310.097i | − 0.351983i | −0.984392 | − | 0.175992i | \(-0.943687\pi\) | ||||
0.984392 | − | 0.175992i | \(-0.0563132\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | 122.236i | 0.138433i | 0.997602 | + | 0.0692165i | \(0.0220499\pi\) | ||||
−0.997602 | + | 0.0692165i | \(0.977950\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | −265.444 | −0.299261 | −0.149630 | − | 0.988742i | \(-0.547808\pi\) | ||||
−0.149630 | + | 0.988742i | \(0.547808\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 272.386 | 0.306396 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 253.343 | 0.283698 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | − 2621.54i | − 2.91606i | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 161.754 | 0.179527 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 0 | 0 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | 672.622i | 0.741590i | 0.928715 | + | 0.370795i | \(0.120915\pi\) | ||||
−0.928715 | + | 0.370795i | \(0.879085\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | − 1402.48i | − 1.53949i | −0.638350 | − | 0.769746i | \(-0.720383\pi\) | ||||
0.638350 | − | 0.769746i | \(-0.279617\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 429.421i | 0.470340i | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 601.208 | 0.655625 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | −338.255 | −0.368068 | −0.184034 | − | 0.982920i | \(-0.558916\pi\) | ||||
−0.184034 | + | 0.982920i | \(0.558916\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | −909.811 | −0.985711 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 0 | 0 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | − 148.207i | − 0.159533i | −0.996814 | − | 0.0797667i | \(-0.974582\pi\) | ||||
0.996814 | − | 0.0797667i | \(-0.0254175\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | −14.5352 | −0.0156125 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | 1416.72i | 1.51197i | 0.654587 | + | 0.755987i | \(0.272843\pi\) | ||||
−0.654587 | + | 0.755987i | \(0.727157\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | − 1398.92i | − 1.48663i | −0.668939 | − | 0.743317i | \(-0.733251\pi\) | ||||
0.668939 | − | 0.743317i | \(-0.266749\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | − 198.342i | − 0.210330i | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | −1050.57 | −1.10937 | −0.554686 | − | 0.832060i | \(-0.687161\pi\) | ||||
−0.554686 | + | 0.832060i | \(0.687161\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | −591.868 | −0.623675 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 551.928 | 0.579148 | 0.289574 | − | 0.957156i | \(-0.406486\pi\) | ||||
0.289574 | + | 0.957156i | \(0.406486\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | − 111.686i | − 0.116461i | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | 2434.61 | 2.53342 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 0 | 0 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | − 357.093i | − 0.369279i | −0.982806 | − | 0.184639i | \(-0.940888\pi\) | ||||
0.982806 | − | 0.184639i | \(-0.0591117\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | − 308.206i | − 0.317411i | −0.987326 | − | 0.158705i | \(-0.949268\pi\) | ||||
0.987326 | − | 0.158705i | \(-0.0507320\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 485.903i | 0.499387i | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | 253.280 | 0.259243 | 0.129621 | − | 0.991564i | \(-0.458624\pi\) | ||||
0.129621 | + | 0.991564i | \(0.458624\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 583.132 | 0.595640 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | 1068.73 | 1.08722 | 0.543609 | − | 0.839339i | \(-0.317058\pi\) | ||||
0.543609 | + | 0.839339i | \(0.317058\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 525.194i | 0.531035i | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | −280.631 | −0.283179 | −0.141590 | − | 0.989925i | \(-0.545221\pi\) | ||||
−0.141590 | + | 0.989925i | \(0.545221\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0 | 0 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 356.574i | 0.357647i | 0.983881 | + | 0.178824i | \(0.0572292\pi\) | ||||
−0.983881 | + | 0.178824i | \(0.942771\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 3600.3.c.i.449.8 | 8 | ||
3.2 | odd | 2 | inner | 3600.3.c.i.449.7 | 8 | ||
4.3 | odd | 2 | 225.3.d.b.224.1 | 8 | |||
5.2 | odd | 4 | 720.3.l.a.161.1 | 4 | |||
5.3 | odd | 4 | 3600.3.l.v.1601.4 | 4 | |||
5.4 | even | 2 | inner | 3600.3.c.i.449.2 | 8 | ||
12.11 | even | 2 | 225.3.d.b.224.7 | 8 | |||
15.2 | even | 4 | 720.3.l.a.161.3 | 4 | |||
15.8 | even | 4 | 3600.3.l.v.1601.3 | 4 | |||
15.14 | odd | 2 | inner | 3600.3.c.i.449.1 | 8 | ||
20.3 | even | 4 | 225.3.c.c.26.4 | 4 | |||
20.7 | even | 4 | 45.3.c.a.26.1 | ✓ | 4 | ||
20.19 | odd | 2 | 225.3.d.b.224.8 | 8 | |||
40.27 | even | 4 | 2880.3.l.g.1601.4 | 4 | |||
40.37 | odd | 4 | 2880.3.l.c.1601.3 | 4 | |||
60.23 | odd | 4 | 225.3.c.c.26.1 | 4 | |||
60.47 | odd | 4 | 45.3.c.a.26.4 | yes | 4 | ||
60.59 | even | 2 | 225.3.d.b.224.2 | 8 | |||
120.77 | even | 4 | 2880.3.l.c.1601.1 | 4 | |||
120.107 | odd | 4 | 2880.3.l.g.1601.2 | 4 | |||
180.7 | even | 12 | 405.3.i.d.296.1 | 8 | |||
180.47 | odd | 12 | 405.3.i.d.296.4 | 8 | |||
180.67 | even | 12 | 405.3.i.d.26.4 | 8 | |||
180.167 | odd | 12 | 405.3.i.d.26.1 | 8 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
45.3.c.a.26.1 | ✓ | 4 | 20.7 | even | 4 | ||
45.3.c.a.26.4 | yes | 4 | 60.47 | odd | 4 | ||
225.3.c.c.26.1 | 4 | 60.23 | odd | 4 | |||
225.3.c.c.26.4 | 4 | 20.3 | even | 4 | |||
225.3.d.b.224.1 | 8 | 4.3 | odd | 2 | |||
225.3.d.b.224.2 | 8 | 60.59 | even | 2 | |||
225.3.d.b.224.7 | 8 | 12.11 | even | 2 | |||
225.3.d.b.224.8 | 8 | 20.19 | odd | 2 | |||
405.3.i.d.26.1 | 8 | 180.167 | odd | 12 | |||
405.3.i.d.26.4 | 8 | 180.67 | even | 12 | |||
405.3.i.d.296.1 | 8 | 180.7 | even | 12 | |||
405.3.i.d.296.4 | 8 | 180.47 | odd | 12 | |||
720.3.l.a.161.1 | 4 | 5.2 | odd | 4 | |||
720.3.l.a.161.3 | 4 | 15.2 | even | 4 | |||
2880.3.l.c.1601.1 | 4 | 120.77 | even | 4 | |||
2880.3.l.c.1601.3 | 4 | 40.37 | odd | 4 | |||
2880.3.l.g.1601.2 | 4 | 120.107 | odd | 4 | |||
2880.3.l.g.1601.4 | 4 | 40.27 | even | 4 | |||
3600.3.c.i.449.1 | 8 | 15.14 | odd | 2 | inner | ||
3600.3.c.i.449.2 | 8 | 5.4 | even | 2 | inner | ||
3600.3.c.i.449.7 | 8 | 3.2 | odd | 2 | inner | ||
3600.3.c.i.449.8 | 8 | 1.1 | even | 1 | trivial | ||
3600.3.l.v.1601.3 | 4 | 15.8 | even | 4 | |||
3600.3.l.v.1601.4 | 4 | 5.3 | odd | 4 |