Properties

Label 3600.2.w.l.1457.4
Level $3600$
Weight $2$
Character 3600.1457
Analytic conductor $28.746$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3600,2,Mod(593,3600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3600, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3600.593");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3600 = 2^{4} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3600.w (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(28.7461447277\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 225)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1457.4
Root \(0.965926 - 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 3600.1457
Dual form 3600.2.w.l.593.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.22474 + 1.22474i) q^{7} +4.24264i q^{11} +(3.67423 - 3.67423i) q^{13} +(1.73205 - 1.73205i) q^{17} -5.00000i q^{19} +(1.73205 + 1.73205i) q^{23} +4.24264 q^{29} -1.00000 q^{31} +(-2.44949 - 2.44949i) q^{37} -8.48528i q^{41} +(-1.22474 + 1.22474i) q^{43} +(-5.19615 + 5.19615i) q^{47} -4.00000i q^{49} +(6.92820 + 6.92820i) q^{53} +12.7279 q^{59} -7.00000 q^{61} +(3.67423 + 3.67423i) q^{67} -8.48528i q^{71} +(-2.44949 + 2.44949i) q^{73} +(-5.19615 + 5.19615i) q^{77} +2.00000i q^{79} +(1.73205 + 1.73205i) q^{83} +8.48528 q^{89} +9.00000 q^{91} +(8.57321 + 8.57321i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{31} - 56 q^{61} + 72 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3600\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(2801\) \(3151\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 1.22474 + 1.22474i 0.462910 + 0.462910i 0.899608 0.436698i \(-0.143852\pi\)
−0.436698 + 0.899608i \(0.643852\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 4.24264i 1.27920i 0.768706 + 0.639602i \(0.220901\pi\)
−0.768706 + 0.639602i \(0.779099\pi\)
\(12\) 0 0
\(13\) 3.67423 3.67423i 1.01905 1.01905i 0.0192343 0.999815i \(-0.493877\pi\)
0.999815 0.0192343i \(-0.00612285\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.73205 1.73205i 0.420084 0.420084i −0.465149 0.885233i \(-0.653999\pi\)
0.885233 + 0.465149i \(0.153999\pi\)
\(18\) 0 0
\(19\) 5.00000i 1.14708i −0.819178 0.573539i \(-0.805570\pi\)
0.819178 0.573539i \(-0.194430\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.73205 + 1.73205i 0.361158 + 0.361158i 0.864239 0.503081i \(-0.167800\pi\)
−0.503081 + 0.864239i \(0.667800\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 4.24264 0.787839 0.393919 0.919145i \(-0.371119\pi\)
0.393919 + 0.919145i \(0.371119\pi\)
\(30\) 0 0
\(31\) −1.00000 −0.179605 −0.0898027 0.995960i \(-0.528624\pi\)
−0.0898027 + 0.995960i \(0.528624\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −2.44949 2.44949i −0.402694 0.402694i 0.476488 0.879181i \(-0.341910\pi\)
−0.879181 + 0.476488i \(0.841910\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 8.48528i 1.32518i −0.748983 0.662589i \(-0.769458\pi\)
0.748983 0.662589i \(-0.230542\pi\)
\(42\) 0 0
\(43\) −1.22474 + 1.22474i −0.186772 + 0.186772i −0.794299 0.607527i \(-0.792162\pi\)
0.607527 + 0.794299i \(0.292162\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −5.19615 + 5.19615i −0.757937 + 0.757937i −0.975947 0.218010i \(-0.930044\pi\)
0.218010 + 0.975947i \(0.430044\pi\)
\(48\) 0 0
\(49\) 4.00000i 0.571429i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.92820 + 6.92820i 0.951662 + 0.951662i 0.998884 0.0472225i \(-0.0150370\pi\)
−0.0472225 + 0.998884i \(0.515037\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 12.7279 1.65703 0.828517 0.559964i \(-0.189185\pi\)
0.828517 + 0.559964i \(0.189185\pi\)
\(60\) 0 0
\(61\) −7.00000 −0.896258 −0.448129 0.893969i \(-0.647910\pi\)
−0.448129 + 0.893969i \(0.647910\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 3.67423 + 3.67423i 0.448879 + 0.448879i 0.894982 0.446103i \(-0.147188\pi\)
−0.446103 + 0.894982i \(0.647188\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 8.48528i 1.00702i −0.863990 0.503509i \(-0.832042\pi\)
0.863990 0.503509i \(-0.167958\pi\)
\(72\) 0 0
\(73\) −2.44949 + 2.44949i −0.286691 + 0.286691i −0.835770 0.549079i \(-0.814979\pi\)
0.549079 + 0.835770i \(0.314979\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −5.19615 + 5.19615i −0.592157 + 0.592157i
\(78\) 0 0
\(79\) 2.00000i 0.225018i 0.993651 + 0.112509i \(0.0358886\pi\)
−0.993651 + 0.112509i \(0.964111\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 1.73205 + 1.73205i 0.190117 + 0.190117i 0.795747 0.605629i \(-0.207079\pi\)
−0.605629 + 0.795747i \(0.707079\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 8.48528 0.899438 0.449719 0.893170i \(-0.351524\pi\)
0.449719 + 0.893170i \(0.351524\pi\)
\(90\) 0 0
\(91\) 9.00000 0.943456
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 8.57321 + 8.57321i 0.870478 + 0.870478i 0.992524 0.122046i \(-0.0389457\pi\)
−0.122046 + 0.992524i \(0.538946\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 8.48528i 0.844317i 0.906522 + 0.422159i \(0.138727\pi\)
−0.906522 + 0.422159i \(0.861273\pi\)
\(102\) 0 0
\(103\) 12.2474 12.2474i 1.20678 1.20678i 0.234712 0.972065i \(-0.424585\pi\)
0.972065 0.234712i \(-0.0754147\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −10.3923 + 10.3923i −1.00466 + 1.00466i −0.00467295 + 0.999989i \(0.501487\pi\)
−0.999989 + 0.00467295i \(0.998513\pi\)
\(108\) 0 0
\(109\) 5.00000i 0.478913i −0.970907 0.239457i \(-0.923031\pi\)
0.970907 0.239457i \(-0.0769693\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 10.3923 + 10.3923i 0.977626 + 0.977626i 0.999755 0.0221293i \(-0.00704455\pi\)
−0.0221293 + 0.999755i \(0.507045\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 4.24264 0.388922
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 6.12372 6.12372i 0.530994 0.530994i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −8.66025 + 8.66025i −0.739895 + 0.739895i −0.972558 0.232662i \(-0.925256\pi\)
0.232662 + 0.972558i \(0.425256\pi\)
\(138\) 0 0
\(139\) 2.00000i 0.169638i −0.996396 0.0848189i \(-0.972969\pi\)
0.996396 0.0848189i \(-0.0270312\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 15.5885 + 15.5885i 1.30357 + 1.30357i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −4.24264 −0.347571 −0.173785 0.984784i \(-0.555600\pi\)
−0.173785 + 0.984784i \(0.555600\pi\)
\(150\) 0 0
\(151\) −13.0000 −1.05792 −0.528962 0.848645i \(-0.677419\pi\)
−0.528962 + 0.848645i \(0.677419\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 6.12372 + 6.12372i 0.488726 + 0.488726i 0.907904 0.419178i \(-0.137682\pi\)
−0.419178 + 0.907904i \(0.637682\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 4.24264i 0.334367i
\(162\) 0 0
\(163\) 11.0227 11.0227i 0.863365 0.863365i −0.128363 0.991727i \(-0.540972\pi\)
0.991727 + 0.128363i \(0.0409721\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 17.3205 17.3205i 1.34030 1.34030i 0.444544 0.895757i \(-0.353366\pi\)
0.895757 0.444544i \(-0.146634\pi\)
\(168\) 0 0
\(169\) 14.0000i 1.07692i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1.73205 + 1.73205i 0.131685 + 0.131685i 0.769877 0.638192i \(-0.220317\pi\)
−0.638192 + 0.769877i \(0.720317\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −4.24264 −0.317110 −0.158555 0.987350i \(-0.550683\pi\)
−0.158555 + 0.987350i \(0.550683\pi\)
\(180\) 0 0
\(181\) 19.0000 1.41226 0.706129 0.708083i \(-0.250440\pi\)
0.706129 + 0.708083i \(0.250440\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 7.34847 + 7.34847i 0.537373 + 0.537373i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 12.7279i 0.920960i −0.887670 0.460480i \(-0.847677\pi\)
0.887670 0.460480i \(-0.152323\pi\)
\(192\) 0 0
\(193\) 15.9217 15.9217i 1.14607 1.14607i 0.158749 0.987319i \(-0.449254\pi\)
0.987319 0.158749i \(-0.0507460\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1.73205 + 1.73205i −0.123404 + 0.123404i −0.766111 0.642708i \(-0.777811\pi\)
0.642708 + 0.766111i \(0.277811\pi\)
\(198\) 0 0
\(199\) 25.0000i 1.77220i −0.463491 0.886102i \(-0.653403\pi\)
0.463491 0.886102i \(-0.346597\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 5.19615 + 5.19615i 0.364698 + 0.364698i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 21.2132 1.46735
\(210\) 0 0
\(211\) −11.0000 −0.757271 −0.378636 0.925546i \(-0.623607\pi\)
−0.378636 + 0.925546i \(0.623607\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −1.22474 1.22474i −0.0831411 0.0831411i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 12.7279i 0.856173i
\(222\) 0 0
\(223\) −6.12372 + 6.12372i −0.410075 + 0.410075i −0.881765 0.471690i \(-0.843644\pi\)
0.471690 + 0.881765i \(0.343644\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −13.8564 + 13.8564i −0.919682 + 0.919682i −0.997006 0.0773240i \(-0.975362\pi\)
0.0773240 + 0.997006i \(0.475362\pi\)
\(228\) 0 0
\(229\) 1.00000i 0.0660819i −0.999454 0.0330409i \(-0.989481\pi\)
0.999454 0.0330409i \(-0.0105192\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −10.3923 10.3923i −0.680823 0.680823i 0.279363 0.960186i \(-0.409877\pi\)
−0.960186 + 0.279363i \(0.909877\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 16.9706 1.09773 0.548867 0.835910i \(-0.315059\pi\)
0.548867 + 0.835910i \(0.315059\pi\)
\(240\) 0 0
\(241\) 5.00000 0.322078 0.161039 0.986948i \(-0.448515\pi\)
0.161039 + 0.986948i \(0.448515\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −18.3712 18.3712i −1.16893 1.16893i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 8.48528i 0.535586i 0.963476 + 0.267793i \(0.0862944\pi\)
−0.963476 + 0.267793i \(0.913706\pi\)
\(252\) 0 0
\(253\) −7.34847 + 7.34847i −0.461994 + 0.461994i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −13.8564 + 13.8564i −0.864339 + 0.864339i −0.991839 0.127500i \(-0.959305\pi\)
0.127500 + 0.991839i \(0.459305\pi\)
\(258\) 0 0
\(259\) 6.00000i 0.372822i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 10.3923 + 10.3923i 0.640817 + 0.640817i 0.950756 0.309939i \(-0.100309\pi\)
−0.309939 + 0.950756i \(0.600309\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 29.6985 1.81075 0.905374 0.424614i \(-0.139590\pi\)
0.905374 + 0.424614i \(0.139590\pi\)
\(270\) 0 0
\(271\) −14.0000 −0.850439 −0.425220 0.905090i \(-0.639803\pi\)
−0.425220 + 0.905090i \(0.639803\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 8.57321 + 8.57321i 0.515115 + 0.515115i 0.916089 0.400975i \(-0.131328\pi\)
−0.400975 + 0.916089i \(0.631328\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 4.24264i 0.253095i 0.991961 + 0.126547i \(0.0403896\pi\)
−0.991961 + 0.126547i \(0.959610\pi\)
\(282\) 0 0
\(283\) −13.4722 + 13.4722i −0.800839 + 0.800839i −0.983227 0.182388i \(-0.941617\pi\)
0.182388 + 0.983227i \(0.441617\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 10.3923 10.3923i 0.613438 0.613438i
\(288\) 0 0
\(289\) 11.0000i 0.647059i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1.73205 + 1.73205i 0.101187 + 0.101187i 0.755888 0.654701i \(-0.227205\pi\)
−0.654701 + 0.755888i \(0.727205\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 12.7279 0.736075
\(300\) 0 0
\(301\) −3.00000 −0.172917
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 23.2702 + 23.2702i 1.32810 + 1.32810i 0.907028 + 0.421069i \(0.138345\pi\)
0.421069 + 0.907028i \(0.361655\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 4.24264i 0.240578i −0.992739 0.120289i \(-0.961618\pi\)
0.992739 0.120289i \(-0.0383821\pi\)
\(312\) 0 0
\(313\) −3.67423 + 3.67423i −0.207680 + 0.207680i −0.803281 0.595601i \(-0.796914\pi\)
0.595601 + 0.803281i \(0.296914\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 3.46410 3.46410i 0.194563 0.194563i −0.603101 0.797665i \(-0.706069\pi\)
0.797665 + 0.603101i \(0.206069\pi\)
\(318\) 0 0
\(319\) 18.0000i 1.00781i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −8.66025 8.66025i −0.481869 0.481869i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −12.7279 −0.701713
\(330\) 0 0
\(331\) 22.0000 1.20923 0.604615 0.796518i \(-0.293327\pi\)
0.604615 + 0.796518i \(0.293327\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −18.3712 18.3712i −1.00074 1.00074i −1.00000 0.000741840i \(-0.999764\pi\)
−0.000741840 1.00000i \(-0.500236\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 4.24264i 0.229752i
\(342\) 0 0
\(343\) 13.4722 13.4722i 0.727430 0.727430i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −15.5885 + 15.5885i −0.836832 + 0.836832i −0.988441 0.151608i \(-0.951555\pi\)
0.151608 + 0.988441i \(0.451555\pi\)
\(348\) 0 0
\(349\) 16.0000i 0.856460i −0.903670 0.428230i \(-0.859137\pi\)
0.903670 0.428230i \(-0.140863\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 15.5885 + 15.5885i 0.829690 + 0.829690i 0.987474 0.157784i \(-0.0504349\pi\)
−0.157784 + 0.987474i \(0.550435\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −6.00000 −0.315789
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −11.0227 11.0227i −0.575380 0.575380i 0.358247 0.933627i \(-0.383375\pi\)
−0.933627 + 0.358247i \(0.883375\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 16.9706i 0.881068i
\(372\) 0 0
\(373\) −1.22474 + 1.22474i −0.0634149 + 0.0634149i −0.738103 0.674688i \(-0.764278\pi\)
0.674688 + 0.738103i \(0.264278\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 15.5885 15.5885i 0.802846 0.802846i
\(378\) 0 0
\(379\) 1.00000i 0.0513665i 0.999670 + 0.0256833i \(0.00817614\pi\)
−0.999670 + 0.0256833i \(0.991824\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 3.46410 + 3.46410i 0.177007 + 0.177007i 0.790050 0.613043i \(-0.210055\pi\)
−0.613043 + 0.790050i \(0.710055\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −16.9706 −0.860442 −0.430221 0.902724i \(-0.641564\pi\)
−0.430221 + 0.902724i \(0.641564\pi\)
\(390\) 0 0
\(391\) 6.00000 0.303433
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 8.57321 + 8.57321i 0.430277 + 0.430277i 0.888723 0.458445i \(-0.151594\pi\)
−0.458445 + 0.888723i \(0.651594\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 16.9706i 0.847469i 0.905786 + 0.423735i \(0.139281\pi\)
−0.905786 + 0.423735i \(0.860719\pi\)
\(402\) 0 0
\(403\) −3.67423 + 3.67423i −0.183027 + 0.183027i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 10.3923 10.3923i 0.515127 0.515127i
\(408\) 0 0
\(409\) 11.0000i 0.543915i 0.962309 + 0.271957i \(0.0876710\pi\)
−0.962309 + 0.271957i \(0.912329\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 15.5885 + 15.5885i 0.767058 + 0.767058i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −8.48528 −0.414533 −0.207267 0.978285i \(-0.566457\pi\)
−0.207267 + 0.978285i \(0.566457\pi\)
\(420\) 0 0
\(421\) −20.0000 −0.974740 −0.487370 0.873195i \(-0.662044\pi\)
−0.487370 + 0.873195i \(0.662044\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −8.57321 8.57321i −0.414887 0.414887i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 29.6985i 1.43053i −0.698856 0.715263i \(-0.746307\pi\)
0.698856 0.715263i \(-0.253693\pi\)
\(432\) 0 0
\(433\) −1.22474 + 1.22474i −0.0588575 + 0.0588575i −0.735923 0.677065i \(-0.763251\pi\)
0.677065 + 0.735923i \(0.263251\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 8.66025 8.66025i 0.414276 0.414276i
\(438\) 0 0
\(439\) 11.0000i 0.525001i 0.964932 + 0.262501i \(0.0845472\pi\)
−0.964932 + 0.262501i \(0.915453\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −17.3205 17.3205i −0.822922 0.822922i 0.163604 0.986526i \(-0.447688\pi\)
−0.986526 + 0.163604i \(0.947688\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −33.9411 −1.60178 −0.800890 0.598811i \(-0.795640\pi\)
−0.800890 + 0.598811i \(0.795640\pi\)
\(450\) 0 0
\(451\) 36.0000 1.69517
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 16.9706i 0.790398i −0.918596 0.395199i \(-0.870676\pi\)
0.918596 0.395199i \(-0.129324\pi\)
\(462\) 0 0
\(463\) 24.4949 24.4949i 1.13837 1.13837i 0.149633 0.988742i \(-0.452191\pi\)
0.988742 0.149633i \(-0.0478091\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −19.0526 + 19.0526i −0.881647 + 0.881647i −0.993702 0.112055i \(-0.964257\pi\)
0.112055 + 0.993702i \(0.464257\pi\)
\(468\) 0 0
\(469\) 9.00000i 0.415581i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −5.19615 5.19615i −0.238919 0.238919i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −38.1838 −1.74466 −0.872330 0.488917i \(-0.837392\pi\)
−0.872330 + 0.488917i \(0.837392\pi\)
\(480\) 0 0
\(481\) −18.0000 −0.820729
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 18.3712 + 18.3712i 0.832477 + 0.832477i 0.987855 0.155378i \(-0.0496595\pi\)
−0.155378 + 0.987855i \(0.549659\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 42.4264i 1.91468i 0.288969 + 0.957338i \(0.406688\pi\)
−0.288969 + 0.957338i \(0.593312\pi\)
\(492\) 0 0
\(493\) 7.34847 7.34847i 0.330958 0.330958i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 10.3923 10.3923i 0.466159 0.466159i
\(498\) 0 0
\(499\) 1.00000i 0.0447661i −0.999749 0.0223831i \(-0.992875\pi\)
0.999749 0.0223831i \(-0.00712535\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −13.8564 13.8564i −0.617827 0.617827i 0.327147 0.944974i \(-0.393913\pi\)
−0.944974 + 0.327147i \(0.893913\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −4.24264 −0.188052 −0.0940259 0.995570i \(-0.529974\pi\)
−0.0940259 + 0.995570i \(0.529974\pi\)
\(510\) 0 0
\(511\) −6.00000 −0.265424
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −22.0454 22.0454i −0.969556 0.969556i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 4.24264i 0.185873i −0.995672 0.0929367i \(-0.970375\pi\)
0.995672 0.0929367i \(-0.0296254\pi\)
\(522\) 0 0
\(523\) −13.4722 + 13.4722i −0.589098 + 0.589098i −0.937387 0.348289i \(-0.886763\pi\)
0.348289 + 0.937387i \(0.386763\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1.73205 + 1.73205i −0.0754493 + 0.0754493i
\(528\) 0 0
\(529\) 17.0000i 0.739130i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −31.1769 31.1769i −1.35042 1.35042i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 16.9706 0.730974
\(540\) 0 0
\(541\) −1.00000 −0.0429934 −0.0214967 0.999769i \(-0.506843\pi\)
−0.0214967 + 0.999769i \(0.506843\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 12.2474 + 12.2474i 0.523663 + 0.523663i 0.918676 0.395013i \(-0.129260\pi\)
−0.395013 + 0.918676i \(0.629260\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 21.2132i 0.903713i
\(552\) 0 0
\(553\) −2.44949 + 2.44949i −0.104163 + 0.104163i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −15.5885 + 15.5885i −0.660504 + 0.660504i −0.955499 0.294995i \(-0.904682\pi\)
0.294995 + 0.955499i \(0.404682\pi\)
\(558\) 0 0
\(559\) 9.00000i 0.380659i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −25.9808 25.9808i −1.09496 1.09496i −0.994991 0.0999679i \(-0.968126\pi\)
−0.0999679 0.994991i \(-0.531874\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −12.7279 −0.533582 −0.266791 0.963754i \(-0.585963\pi\)
−0.266791 + 0.963754i \(0.585963\pi\)
\(570\) 0 0
\(571\) −17.0000 −0.711428 −0.355714 0.934595i \(-0.615762\pi\)
−0.355714 + 0.934595i \(0.615762\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 23.2702 + 23.2702i 0.968749 + 0.968749i 0.999526 0.0307771i \(-0.00979822\pi\)
−0.0307771 + 0.999526i \(0.509798\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 4.24264i 0.176014i
\(582\) 0 0
\(583\) −29.3939 + 29.3939i −1.21737 + 1.21737i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 13.8564 13.8564i 0.571915 0.571915i −0.360748 0.932663i \(-0.617479\pi\)
0.932663 + 0.360748i \(0.117479\pi\)
\(588\) 0 0
\(589\) 5.00000i 0.206021i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −6.92820 6.92820i −0.284507 0.284507i 0.550396 0.834904i \(-0.314477\pi\)
−0.834904 + 0.550396i \(0.814477\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −25.4558 −1.04010 −0.520049 0.854137i \(-0.674086\pi\)
−0.520049 + 0.854137i \(0.674086\pi\)
\(600\) 0 0
\(601\) 43.0000 1.75401 0.877003 0.480484i \(-0.159539\pi\)
0.877003 + 0.480484i \(0.159539\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −19.5959 19.5959i −0.795374 0.795374i 0.186988 0.982362i \(-0.440127\pi\)
−0.982362 + 0.186988i \(0.940127\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 38.1838i 1.54475i
\(612\) 0 0
\(613\) −26.9444 + 26.9444i −1.08827 + 1.08827i −0.0925671 + 0.995706i \(0.529507\pi\)
−0.995706 + 0.0925671i \(0.970493\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 17.3205 17.3205i 0.697297 0.697297i −0.266529 0.963827i \(-0.585877\pi\)
0.963827 + 0.266529i \(0.0858769\pi\)
\(618\) 0 0
\(619\) 13.0000i 0.522514i −0.965269 0.261257i \(-0.915863\pi\)
0.965269 0.261257i \(-0.0841370\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 10.3923 + 10.3923i 0.416359 + 0.416359i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −8.48528 −0.338330
\(630\) 0 0
\(631\) −35.0000 −1.39333 −0.696664 0.717398i \(-0.745333\pi\)
−0.696664 + 0.717398i \(0.745333\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −14.6969 14.6969i −0.582314 0.582314i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 33.9411i 1.34059i −0.742093 0.670297i \(-0.766167\pi\)
0.742093 0.670297i \(-0.233833\pi\)
\(642\) 0 0
\(643\) −29.3939 + 29.3939i −1.15918 + 1.15918i −0.174529 + 0.984652i \(0.555840\pi\)
−0.984652 + 0.174529i \(0.944160\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 17.3205 17.3205i 0.680939 0.680939i −0.279272 0.960212i \(-0.590093\pi\)
0.960212 + 0.279272i \(0.0900933\pi\)
\(648\) 0 0
\(649\) 54.0000i 2.11969i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −19.0526 19.0526i −0.745584 0.745584i 0.228062 0.973647i \(-0.426761\pi\)
−0.973647 + 0.228062i \(0.926761\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 8.48528 0.330540 0.165270 0.986248i \(-0.447151\pi\)
0.165270 + 0.986248i \(0.447151\pi\)
\(660\) 0 0
\(661\) −20.0000 −0.777910 −0.388955 0.921257i \(-0.627164\pi\)
−0.388955 + 0.921257i \(0.627164\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 7.34847 + 7.34847i 0.284534 + 0.284534i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 29.6985i 1.14650i
\(672\) 0 0
\(673\) −2.44949 + 2.44949i −0.0944209 + 0.0944209i −0.752739 0.658319i \(-0.771268\pi\)
0.658319 + 0.752739i \(0.271268\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 15.5885 15.5885i 0.599113 0.599113i −0.340963 0.940077i \(-0.610753\pi\)
0.940077 + 0.340963i \(0.110753\pi\)
\(678\) 0 0
\(679\) 21.0000i 0.805906i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −6.92820 6.92820i −0.265100 0.265100i 0.562022 0.827122i \(-0.310024\pi\)
−0.827122 + 0.562022i \(0.810024\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 50.9117 1.93958
\(690\) 0 0
\(691\) 32.0000 1.21734 0.608669 0.793424i \(-0.291704\pi\)
0.608669 + 0.793424i \(0.291704\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −14.6969 14.6969i −0.556686 0.556686i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 21.2132i 0.801212i 0.916250 + 0.400606i \(0.131200\pi\)
−0.916250 + 0.400606i \(0.868800\pi\)
\(702\) 0 0
\(703\) −12.2474 + 12.2474i −0.461921 + 0.461921i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −10.3923 + 10.3923i −0.390843 + 0.390843i
\(708\) 0 0
\(709\) 41.0000i 1.53979i 0.638172 + 0.769894i \(0.279691\pi\)
−0.638172 + 0.769894i \(0.720309\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −1.73205 1.73205i −0.0648658 0.0648658i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −21.2132 −0.791119 −0.395559 0.918440i \(-0.629449\pi\)
−0.395559 + 0.918440i \(0.629449\pi\)
\(720\) 0 0
\(721\) 30.0000 1.11726
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −35.5176 35.5176i −1.31727 1.31727i −0.915925 0.401350i \(-0.868541\pi\)
−0.401350 0.915925i \(-0.631459\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 4.24264i 0.156920i
\(732\) 0 0
\(733\) 22.0454 22.0454i 0.814266 0.814266i −0.171005 0.985270i \(-0.554701\pi\)
0.985270 + 0.171005i \(0.0547013\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −15.5885 + 15.5885i −0.574208 + 0.574208i
\(738\) 0 0
\(739\) 10.0000i 0.367856i 0.982940 + 0.183928i \(0.0588813\pi\)
−0.982940 + 0.183928i \(0.941119\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 20.7846 + 20.7846i 0.762513 + 0.762513i 0.976776 0.214263i \(-0.0687349\pi\)
−0.214263 + 0.976776i \(0.568735\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −25.4558 −0.930136
\(750\) 0 0
\(751\) −46.0000 −1.67856 −0.839282 0.543696i \(-0.817024\pi\)
−0.839282 + 0.543696i \(0.817024\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −15.9217 15.9217i −0.578683 0.578683i 0.355857 0.934540i \(-0.384189\pi\)
−0.934540 + 0.355857i \(0.884189\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 25.4558i 0.922774i 0.887199 + 0.461387i \(0.152648\pi\)
−0.887199 + 0.461387i \(0.847352\pi\)
\(762\) 0 0
\(763\) 6.12372 6.12372i 0.221694 0.221694i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 46.7654 46.7654i 1.68860 1.68860i
\(768\) 0 0
\(769\) 29.0000i 1.04577i −0.852404 0.522883i \(-0.824856\pi\)
0.852404 0.522883i \(-0.175144\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −27.7128 27.7128i −0.996761 0.996761i 0.00323417 0.999995i \(-0.498971\pi\)
−0.999995 + 0.00323417i \(0.998971\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −42.4264 −1.52008
\(780\) 0 0
\(781\) 36.0000 1.28818
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −20.8207 20.8207i −0.742176 0.742176i 0.230820 0.972996i \(-0.425859\pi\)
−0.972996 + 0.230820i \(0.925859\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 25.4558i 0.905106i
\(792\) 0 0
\(793\) −25.7196 + 25.7196i −0.913331 + 0.913331i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 3.46410 3.46410i 0.122705 0.122705i −0.643088 0.765793i \(-0.722347\pi\)
0.765793 + 0.643088i \(0.222347\pi\)
\(798\) 0 0
\(799\) 18.0000i 0.636794i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −10.3923 10.3923i −0.366736 0.366736i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −50.9117 −1.78996 −0.894980 0.446107i \(-0.852810\pi\)
−0.894980 + 0.446107i \(0.852810\pi\)
\(810\) 0 0
\(811\) 35.0000 1.22902 0.614508 0.788911i \(-0.289355\pi\)
0.614508 + 0.788911i \(0.289355\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 6.12372 + 6.12372i 0.214242 + 0.214242i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 21.2132i 0.740346i 0.928963 + 0.370173i \(0.120702\pi\)
−0.928963 + 0.370173i \(0.879298\pi\)
\(822\) 0 0
\(823\) 18.3712 18.3712i 0.640379 0.640379i −0.310270 0.950649i \(-0.600419\pi\)
0.950649 + 0.310270i \(0.100419\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 13.8564 13.8564i 0.481834 0.481834i −0.423883 0.905717i \(-0.639333\pi\)
0.905717 + 0.423883i \(0.139333\pi\)
\(828\) 0 0
\(829\) 10.0000i 0.347314i −0.984806 0.173657i \(-0.944442\pi\)
0.984806 0.173657i \(-0.0555585\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −6.92820 6.92820i −0.240048 0.240048i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 12.7279 0.439417 0.219708 0.975566i \(-0.429489\pi\)
0.219708 + 0.975566i \(0.429489\pi\)
\(840\) 0 0
\(841\) −11.0000 −0.379310
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −8.57321 8.57321i −0.294579 0.294579i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 8.48528i 0.290872i
\(852\) 0 0
\(853\) −25.7196 + 25.7196i −0.880624 + 0.880624i −0.993598 0.112974i \(-0.963962\pi\)
0.112974 + 0.993598i \(0.463962\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 6.92820 6.92820i 0.236663 0.236663i −0.578804 0.815467i \(-0.696480\pi\)
0.815467 + 0.578804i \(0.196480\pi\)
\(858\) 0 0
\(859\) 8.00000i 0.272956i 0.990643 + 0.136478i \(0.0435784\pi\)
−0.990643 + 0.136478i \(0.956422\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −6.92820 6.92820i −0.235839 0.235839i 0.579286 0.815125i \(-0.303332\pi\)
−0.815125 + 0.579286i \(0.803332\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −8.48528 −0.287843
\(870\) 0 0
\(871\) 27.0000 0.914860
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −1.22474 1.22474i −0.0413567 0.0413567i 0.686126 0.727483i \(-0.259310\pi\)
−0.727483 + 0.686126i \(0.759310\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 0 0
\(883\) −13.4722 + 13.4722i −0.453375 + 0.453375i −0.896473 0.443098i \(-0.853879\pi\)
0.443098 + 0.896473i \(0.353879\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 8.66025 8.66025i 0.290783 0.290783i −0.546607 0.837390i \(-0.684081\pi\)
0.837390 + 0.546607i \(0.184081\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 25.9808 + 25.9808i 0.869413 + 0.869413i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −4.24264 −0.141500
\(900\) 0 0
\(901\) 24.0000 0.799556
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 24.4949 + 24.4949i 0.813340 + 0.813340i 0.985133 0.171793i \(-0.0549561\pi\)
−0.171793 + 0.985133i \(0.554956\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 12.7279i 0.421695i −0.977519 0.210847i \(-0.932378\pi\)
0.977519 0.210847i \(-0.0676223\pi\)
\(912\) 0 0
\(913\) −7.34847 + 7.34847i −0.243199 + 0.243199i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 1.00000i 0.0329870i 0.999864 + 0.0164935i \(0.00525028\pi\)
−0.999864 + 0.0164935i \(0.994750\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −31.1769 31.1769i −1.02620 1.02620i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −4.24264 −0.139197 −0.0695983 0.997575i \(-0.522172\pi\)
−0.0695983 + 0.997575i \(0.522172\pi\)
\(930\) 0 0
\(931\) −20.0000 −0.655474
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 13.4722 + 13.4722i 0.440117 + 0.440117i 0.892051 0.451934i \(-0.149266\pi\)
−0.451934 + 0.892051i \(0.649266\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 55.1543i 1.79798i 0.437969 + 0.898990i \(0.355698\pi\)
−0.437969 + 0.898990i \(0.644302\pi\)
\(942\) 0 0
\(943\) 14.6969 14.6969i 0.478598 0.478598i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −22.5167 + 22.5167i −0.731693 + 0.731693i −0.970955 0.239262i \(-0.923095\pi\)
0.239262 + 0.970955i \(0.423095\pi\)
\(948\) 0 0
\(949\) 18.0000i 0.584305i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −31.1769 31.1769i −1.00992 1.00992i −0.999950 0.00996902i \(-0.996827\pi\)
−0.00996902 0.999950i \(-0.503173\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −21.2132 −0.685010
\(960\) 0 0
\(961\) −30.0000 −0.967742
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −19.5959 19.5959i −0.630162 0.630162i 0.317946 0.948109i \(-0.397007\pi\)
−0.948109 + 0.317946i \(0.897007\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 12.7279i 0.408458i −0.978923 0.204229i \(-0.934531\pi\)
0.978923 0.204229i \(-0.0654688\pi\)
\(972\) 0 0
\(973\) 2.44949 2.44949i 0.0785270 0.0785270i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 5.19615 5.19615i 0.166240 0.166240i −0.619085 0.785324i \(-0.712496\pi\)
0.785324 + 0.619085i \(0.212496\pi\)
\(978\) 0 0
\(979\) 36.0000i 1.15056i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −13.8564 13.8564i −0.441951 0.441951i 0.450716 0.892667i \(-0.351169\pi\)
−0.892667 + 0.450716i \(0.851169\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −4.24264 −0.134908
\(990\) 0 0
\(991\) 31.0000 0.984747 0.492374 0.870384i \(-0.336129\pi\)
0.492374 + 0.870384i \(0.336129\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 36.7423 + 36.7423i 1.16364 + 1.16364i 0.983672 + 0.179970i \(0.0575999\pi\)
0.179970 + 0.983672i \(0.442400\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3600.2.w.l.1457.4 8
3.2 odd 2 inner 3600.2.w.l.1457.3 8
4.3 odd 2 225.2.f.b.107.1 8
5.2 odd 4 inner 3600.2.w.l.593.2 8
5.3 odd 4 inner 3600.2.w.l.593.4 8
5.4 even 2 inner 3600.2.w.l.1457.2 8
12.11 even 2 225.2.f.b.107.3 yes 8
15.2 even 4 inner 3600.2.w.l.593.1 8
15.8 even 4 inner 3600.2.w.l.593.3 8
15.14 odd 2 inner 3600.2.w.l.1457.1 8
20.3 even 4 225.2.f.b.143.3 yes 8
20.7 even 4 225.2.f.b.143.2 yes 8
20.19 odd 2 225.2.f.b.107.4 yes 8
60.23 odd 4 225.2.f.b.143.1 yes 8
60.47 odd 4 225.2.f.b.143.4 yes 8
60.59 even 2 225.2.f.b.107.2 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
225.2.f.b.107.1 8 4.3 odd 2
225.2.f.b.107.2 yes 8 60.59 even 2
225.2.f.b.107.3 yes 8 12.11 even 2
225.2.f.b.107.4 yes 8 20.19 odd 2
225.2.f.b.143.1 yes 8 60.23 odd 4
225.2.f.b.143.2 yes 8 20.7 even 4
225.2.f.b.143.3 yes 8 20.3 even 4
225.2.f.b.143.4 yes 8 60.47 odd 4
3600.2.w.l.593.1 8 15.2 even 4 inner
3600.2.w.l.593.2 8 5.2 odd 4 inner
3600.2.w.l.593.3 8 15.8 even 4 inner
3600.2.w.l.593.4 8 5.3 odd 4 inner
3600.2.w.l.1457.1 8 15.14 odd 2 inner
3600.2.w.l.1457.2 8 5.4 even 2 inner
3600.2.w.l.1457.3 8 3.2 odd 2 inner
3600.2.w.l.1457.4 8 1.1 even 1 trivial