Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [3600,2,Mod(2449,3600)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3600, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3600.2449");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 3600 = 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 3600.f (of order \(2\), degree \(1\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(28.7461447277\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(i)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{2} + 1 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 1800) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
Embedding invariants
Embedding label | 2449.1 | ||
Root | \(-1.00000i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 3600.2449 |
Dual form | 3600.2.f.s.2449.2 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3600\mathbb{Z}\right)^\times\).
\(n\) | \(577\) | \(901\) | \(2801\) | \(3151\) |
\(\chi(n)\) | \(-1\) | \(1\) | \(1\) | \(1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 0 | 0 | ||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | − 1.00000i | − 0.377964i | −0.981981 | − | 0.188982i | \(-0.939481\pi\) | ||||
0.981981 | − | 0.188982i | \(-0.0605189\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 4.00000 | 1.20605 | 0.603023 | − | 0.797724i | \(-0.293963\pi\) | ||||
0.603023 | + | 0.797724i | \(0.293963\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 1.00000i | 0.277350i | 0.990338 | + | 0.138675i | \(0.0442844\pi\) | ||||
−0.990338 | + | 0.138675i | \(0.955716\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | − 4.00000i | − 0.970143i | −0.874475 | − | 0.485071i | \(-0.838794\pi\) | ||||
0.874475 | − | 0.485071i | \(-0.161206\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 1.00000 | 0.229416 | 0.114708 | − | 0.993399i | \(-0.463407\pi\) | ||||
0.114708 | + | 0.993399i | \(0.463407\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 4.00000i | 0.834058i | 0.908893 | + | 0.417029i | \(0.136929\pi\) | ||||
−0.908893 | + | 0.417029i | \(0.863071\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 0 | 0 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 4.00000 | 0.742781 | 0.371391 | − | 0.928477i | \(-0.378881\pi\) | ||||
0.371391 | + | 0.928477i | \(0.378881\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 5.00000 | 0.898027 | 0.449013 | − | 0.893525i | \(-0.351776\pi\) | ||||
0.449013 | + | 0.893525i | \(0.351776\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | − 6.00000i | − 0.986394i | −0.869918 | − | 0.493197i | \(-0.835828\pi\) | ||||
0.869918 | − | 0.493197i | \(-0.164172\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | −12.0000 | −1.87409 | −0.937043 | − | 0.349215i | \(-0.886448\pi\) | ||||
−0.937043 | + | 0.349215i | \(0.886448\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 5.00000i | 0.762493i | 0.924473 | + | 0.381246i | \(0.124505\pi\) | ||||
−0.924473 | + | 0.381246i | \(0.875495\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 8.00000i | 1.16692i | 0.812142 | + | 0.583460i | \(0.198301\pi\) | ||||
−0.812142 | + | 0.583460i | \(0.801699\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | 6.00000 | 0.857143 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | − 12.0000i | − 1.64833i | −0.566352 | − | 0.824163i | \(-0.691646\pi\) | ||||
0.566352 | − | 0.824163i | \(-0.308354\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | −8.00000 | −1.04151 | −0.520756 | − | 0.853706i | \(-0.674350\pi\) | ||||
−0.520756 | + | 0.853706i | \(0.674350\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | 7.00000 | 0.896258 | 0.448129 | − | 0.893969i | \(-0.352090\pi\) | ||||
0.448129 | + | 0.893969i | \(0.352090\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | − 13.0000i | − 1.58820i | −0.607785 | − | 0.794101i | \(-0.707942\pi\) | ||||
0.607785 | − | 0.794101i | \(-0.292058\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 12.0000 | 1.42414 | 0.712069 | − | 0.702109i | \(-0.247758\pi\) | ||||
0.712069 | + | 0.702109i | \(0.247758\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 6.00000i | 0.702247i | 0.936329 | + | 0.351123i | \(0.114200\pi\) | ||||
−0.936329 | + | 0.351123i | \(0.885800\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | − 4.00000i | − 0.455842i | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 12.0000 | 1.35011 | 0.675053 | − | 0.737769i | \(-0.264121\pi\) | ||||
0.675053 | + | 0.737769i | \(0.264121\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 8.00000i | 0.878114i | 0.898459 | + | 0.439057i | \(0.144687\pi\) | ||||
−0.898459 | + | 0.439057i | \(0.855313\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 1.00000 | 0.104828 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | − 13.0000i | − 1.31995i | −0.751288 | − | 0.659975i | \(-0.770567\pi\) | ||||
0.751288 | − | 0.659975i | \(-0.229433\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | −12.0000 | −1.19404 | −0.597022 | − | 0.802225i | \(-0.703650\pi\) | ||||
−0.597022 | + | 0.802225i | \(0.703650\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | − 4.00000i | − 0.394132i | −0.980390 | − | 0.197066i | \(-0.936859\pi\) | ||||
0.980390 | − | 0.197066i | \(-0.0631413\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 12.0000i | 1.16008i | 0.814587 | + | 0.580042i | \(0.196964\pi\) | ||||
−0.814587 | + | 0.580042i | \(0.803036\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | 7.00000 | 0.670478 | 0.335239 | − | 0.942133i | \(-0.391183\pi\) | ||||
0.335239 | + | 0.942133i | \(0.391183\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | −4.00000 | −0.366679 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | 5.00000 | 0.454545 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | − 12.0000i | − 1.06483i | −0.846484 | − | 0.532414i | \(-0.821285\pi\) | ||||
0.846484 | − | 0.532414i | \(-0.178715\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 12.0000 | 1.04844 | 0.524222 | − | 0.851581i | \(-0.324356\pi\) | ||||
0.524222 | + | 0.851581i | \(0.324356\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | − 1.00000i | − 0.0867110i | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | − 8.00000i | − 0.683486i | −0.939793 | − | 0.341743i | \(-0.888983\pi\) | ||||
0.939793 | − | 0.341743i | \(-0.111017\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 4.00000i | 0.334497i | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | 8.00000 | 0.655386 | 0.327693 | − | 0.944784i | \(-0.393729\pi\) | ||||
0.327693 | + | 0.944784i | \(0.393729\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 19.0000 | 1.54620 | 0.773099 | − | 0.634285i | \(-0.218706\pi\) | ||||
0.773099 | + | 0.634285i | \(0.218706\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | − 19.0000i | − 1.51637i | −0.652042 | − | 0.758183i | \(-0.726088\pi\) | ||||
0.652042 | − | 0.758183i | \(-0.273912\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 4.00000 | 0.315244 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 23.0000i | 1.80150i | 0.434339 | + | 0.900750i | \(0.356982\pi\) | ||||
−0.434339 | + | 0.900750i | \(0.643018\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | − 12.0000i | − 0.928588i | −0.885681 | − | 0.464294i | \(-0.846308\pi\) | ||||
0.885681 | − | 0.464294i | \(-0.153692\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 12.0000 | 0.923077 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | 4.00000i | 0.304114i | 0.988372 | + | 0.152057i | \(0.0485898\pi\) | ||||
−0.988372 | + | 0.152057i | \(0.951410\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 16.0000 | 1.19590 | 0.597948 | − | 0.801535i | \(-0.295983\pi\) | ||||
0.597948 | + | 0.801535i | \(0.295983\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 5.00000 | 0.371647 | 0.185824 | − | 0.982583i | \(-0.440505\pi\) | ||||
0.185824 | + | 0.982583i | \(0.440505\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | − 16.0000i | − 1.17004i | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | −4.00000 | −0.289430 | −0.144715 | − | 0.989473i | \(-0.546227\pi\) | ||||
−0.144715 | + | 0.989473i | \(0.546227\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | 7.00000i | 0.503871i | 0.967744 | + | 0.251936i | \(0.0810671\pi\) | ||||
−0.967744 | + | 0.251936i | \(0.918933\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | − 8.00000i | − 0.569976i | −0.958531 | − | 0.284988i | \(-0.908010\pi\) | ||||
0.958531 | − | 0.284988i | \(-0.0919897\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | 17.0000 | 1.20510 | 0.602549 | − | 0.798082i | \(-0.294152\pi\) | ||||
0.602549 | + | 0.798082i | \(0.294152\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | − 4.00000i | − 0.280745i | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 4.00000 | 0.276686 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | −5.00000 | −0.344214 | −0.172107 | − | 0.985078i | \(-0.555058\pi\) | ||||
−0.172107 | + | 0.985078i | \(0.555058\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | − 5.00000i | − 0.339422i | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 4.00000 | 0.269069 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | − 23.0000i | − 1.54019i | −0.637927 | − | 0.770097i | \(-0.720208\pi\) | ||||
0.637927 | − | 0.770097i | \(-0.279792\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | − 12.0000i | − 0.796468i | −0.917284 | − | 0.398234i | \(-0.869623\pi\) | ||||
0.917284 | − | 0.398234i | \(-0.130377\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | −1.00000 | −0.0660819 | −0.0330409 | − | 0.999454i | \(-0.510519\pi\) | ||||
−0.0330409 | + | 0.999454i | \(0.510519\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | − 12.0000i | − 0.786146i | −0.919507 | − | 0.393073i | \(-0.871412\pi\) | ||||
0.919507 | − | 0.393073i | \(-0.128588\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | −12.0000 | −0.776215 | −0.388108 | − | 0.921614i | \(-0.626871\pi\) | ||||
−0.388108 | + | 0.921614i | \(0.626871\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | 17.0000 | 1.09507 | 0.547533 | − | 0.836784i | \(-0.315567\pi\) | ||||
0.547533 | + | 0.836784i | \(0.315567\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 1.00000i | 0.0636285i | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | −24.0000 | −1.51487 | −0.757433 | − | 0.652913i | \(-0.773547\pi\) | ||||
−0.757433 | + | 0.652913i | \(0.773547\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 16.0000i | 1.00591i | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | 24.0000i | 1.49708i | 0.663090 | + | 0.748539i | \(0.269245\pi\) | ||||
−0.663090 | + | 0.748539i | \(0.730755\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | −6.00000 | −0.372822 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | − 12.0000i | − 0.739952i | −0.929041 | − | 0.369976i | \(-0.879366\pi\) | ||||
0.929041 | − | 0.369976i | \(-0.120634\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | −28.0000 | −1.70719 | −0.853595 | − | 0.520937i | \(-0.825583\pi\) | ||||
−0.853595 | + | 0.520937i | \(0.825583\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 12.0000 | 0.728948 | 0.364474 | − | 0.931214i | \(-0.381249\pi\) | ||||
0.364474 | + | 0.931214i | \(0.381249\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 7.00000i | 0.420589i | 0.977638 | + | 0.210295i | \(0.0674423\pi\) | ||||
−0.977638 | + | 0.210295i | \(0.932558\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 20.0000 | 1.19310 | 0.596550 | − | 0.802576i | \(-0.296538\pi\) | ||||
0.596550 | + | 0.802576i | \(0.296538\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 31.0000i | 1.84276i | 0.388664 | + | 0.921379i | \(0.372937\pi\) | ||||
−0.388664 | + | 0.921379i | \(0.627063\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 12.0000i | 0.708338i | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | 1.00000 | 0.0588235 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | 32.0000i | 1.86946i | 0.355359 | + | 0.934730i | \(0.384359\pi\) | ||||
−0.355359 | + | 0.934730i | \(0.615641\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | −4.00000 | −0.231326 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 5.00000 | 0.288195 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | − 11.0000i | − 0.627803i | −0.949456 | − | 0.313902i | \(-0.898364\pi\) | ||||
0.949456 | − | 0.313902i | \(-0.101636\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | −16.0000 | −0.907277 | −0.453638 | − | 0.891186i | \(-0.649874\pi\) | ||||
−0.453638 | + | 0.891186i | \(0.649874\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | − 13.0000i | − 0.734803i | −0.930062 | − | 0.367402i | \(-0.880247\pi\) | ||||
0.930062 | − | 0.367402i | \(-0.119753\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | 24.0000i | 1.34797i | 0.738743 | + | 0.673987i | \(0.235420\pi\) | ||||
−0.738743 | + | 0.673987i | \(0.764580\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 16.0000 | 0.895828 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | − 4.00000i | − 0.222566i | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 8.00000 | 0.441054 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | − 13.0000i | − 0.708155i | −0.935216 | − | 0.354078i | \(-0.884795\pi\) | ||||
0.935216 | − | 0.354078i | \(-0.115205\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 20.0000 | 1.08306 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | − 13.0000i | − 0.701934i | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | − 8.00000i | − 0.429463i | −0.976673 | − | 0.214731i | \(-0.931112\pi\) | ||||
0.976673 | − | 0.214731i | \(-0.0688876\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | 18.0000 | 0.963518 | 0.481759 | − | 0.876304i | \(-0.339998\pi\) | ||||
0.481759 | + | 0.876304i | \(0.339998\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 4.00000i | 0.212899i | 0.994318 | + | 0.106449i | \(0.0339482\pi\) | ||||
−0.994318 | + | 0.106449i | \(0.966052\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | 36.0000 | 1.90001 | 0.950004 | − | 0.312239i | \(-0.101079\pi\) | ||||
0.950004 | + | 0.312239i | \(0.101079\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −18.0000 | −0.947368 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | 17.0000i | 0.887393i | 0.896177 | + | 0.443696i | \(0.146333\pi\) | ||||
−0.896177 | + | 0.443696i | \(0.853667\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | −12.0000 | −0.623009 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | − 5.00000i | − 0.258890i | −0.991587 | − | 0.129445i | \(-0.958680\pi\) | ||||
0.991587 | − | 0.129445i | \(-0.0413196\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 4.00000i | 0.206010i | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | −29.0000 | −1.48963 | −0.744815 | − | 0.667271i | \(-0.767462\pi\) | ||||
−0.744815 | + | 0.667271i | \(0.767462\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | − 24.0000i | − 1.22634i | −0.789950 | − | 0.613171i | \(-0.789894\pi\) | ||||
0.789950 | − | 0.613171i | \(-0.210106\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | −12.0000 | −0.608424 | −0.304212 | − | 0.952604i | \(-0.598393\pi\) | ||||
−0.304212 | + | 0.952604i | \(0.598393\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 16.0000 | 0.809155 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | − 7.00000i | − 0.351320i | −0.984451 | − | 0.175660i | \(-0.943794\pi\) | ||||
0.984451 | − | 0.175660i | \(-0.0562059\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | 12.0000 | 0.599251 | 0.299626 | − | 0.954057i | \(-0.403138\pi\) | ||||
0.299626 | + | 0.954057i | \(0.403138\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 5.00000i | 0.249068i | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | − 24.0000i | − 1.18964i | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | −25.0000 | −1.23617 | −0.618085 | − | 0.786111i | \(-0.712091\pi\) | ||||
−0.618085 | + | 0.786111i | \(0.712091\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 8.00000i | 0.393654i | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | −12.0000 | −0.586238 | −0.293119 | − | 0.956076i | \(-0.594693\pi\) | ||||
−0.293119 | + | 0.956076i | \(0.594693\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | −6.00000 | −0.292422 | −0.146211 | − | 0.989253i | \(-0.546708\pi\) | ||||
−0.146211 | + | 0.989253i | \(0.546708\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | − 7.00000i | − 0.338754i | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | −28.0000 | −1.34871 | −0.674356 | − | 0.738406i | \(-0.735579\pi\) | ||||
−0.674356 | + | 0.738406i | \(0.735579\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 11.0000i | 0.528626i | 0.964437 | + | 0.264313i | \(0.0851452\pi\) | ||||
−0.964437 | + | 0.264313i | \(0.914855\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 4.00000i | 0.191346i | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 19.0000 | 0.906821 | 0.453410 | − | 0.891302i | \(-0.350207\pi\) | ||||
0.453410 | + | 0.891302i | \(0.350207\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | − 24.0000i | − 1.14027i | −0.821549 | − | 0.570137i | \(-0.806890\pi\) | ||||
0.821549 | − | 0.570137i | \(-0.193110\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | −24.0000 | −1.13263 | −0.566315 | − | 0.824189i | \(-0.691631\pi\) | ||||
−0.566315 | + | 0.824189i | \(0.691631\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | −48.0000 | −2.26023 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | 26.0000i | 1.21623i | 0.793849 | + | 0.608114i | \(0.208074\pi\) | ||||
−0.793849 | + | 0.608114i | \(0.791926\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 12.0000 | 0.558896 | 0.279448 | − | 0.960161i | \(-0.409849\pi\) | ||||
0.279448 | + | 0.960161i | \(0.409849\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | − 36.0000i | − 1.67306i | −0.547920 | − | 0.836531i | \(-0.684580\pi\) | ||||
0.547920 | − | 0.836531i | \(-0.315420\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | − 20.0000i | − 0.925490i | −0.886492 | − | 0.462745i | \(-0.846865\pi\) | ||||
0.886492 | − | 0.462745i | \(-0.153135\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | −13.0000 | −0.600284 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 20.0000i | 0.919601i | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 8.00000 | 0.365529 | 0.182765 | − | 0.983157i | \(-0.441495\pi\) | ||||
0.182765 | + | 0.983157i | \(0.441495\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 6.00000 | 0.273576 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 13.0000i | 0.589086i | 0.955638 | + | 0.294543i | \(0.0951675\pi\) | ||||
−0.955638 | + | 0.294543i | \(0.904833\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | − 16.0000i | − 0.720604i | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | − 12.0000i | − 0.538274i | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | −19.0000 | −0.850557 | −0.425278 | − | 0.905063i | \(-0.639824\pi\) | ||||
−0.425278 | + | 0.905063i | \(0.639824\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 36.0000i | 1.60516i | 0.596544 | + | 0.802580i | \(0.296540\pi\) | ||||
−0.596544 | + | 0.802580i | \(0.703460\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | 40.0000 | 1.77297 | 0.886484 | − | 0.462758i | \(-0.153140\pi\) | ||||
0.886484 | + | 0.462758i | \(0.153140\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 6.00000 | 0.265424 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 32.0000i | 1.40736i | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 20.0000 | 0.876216 | 0.438108 | − | 0.898922i | \(-0.355649\pi\) | ||||
0.438108 | + | 0.898922i | \(0.355649\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 35.0000i | 1.53044i | 0.643767 | + | 0.765222i | \(0.277371\pi\) | ||||
−0.643767 | + | 0.765222i | \(0.722629\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | − 20.0000i | − 0.871214i | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | 7.00000 | 0.304348 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | − 12.0000i | − 0.519778i | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 24.0000 | 1.03375 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | −11.0000 | −0.472927 | −0.236463 | − | 0.971640i | \(-0.575988\pi\) | ||||
−0.236463 | + | 0.971640i | \(0.575988\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 8.00000i | 0.342055i | 0.985266 | + | 0.171028i | \(0.0547087\pi\) | ||||
−0.985266 | + | 0.171028i | \(0.945291\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 4.00000 | 0.170406 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | − 12.0000i | − 0.510292i | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | − 16.0000i | − 0.677942i | −0.940797 | − | 0.338971i | \(-0.889921\pi\) | ||||
0.940797 | − | 0.338971i | \(-0.110079\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | −5.00000 | −0.211477 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | − 20.0000i | − 0.842900i | −0.906852 | − | 0.421450i | \(-0.861521\pi\) | ||||
0.906852 | − | 0.421450i | \(-0.138479\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | −4.00000 | −0.167689 | −0.0838444 | − | 0.996479i | \(-0.526720\pi\) | ||||
−0.0838444 | + | 0.996479i | \(0.526720\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | −25.0000 | −1.04622 | −0.523109 | − | 0.852266i | \(-0.675228\pi\) | ||||
−0.523109 | + | 0.852266i | \(0.675228\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | − 11.0000i | − 0.457936i | −0.973434 | − | 0.228968i | \(-0.926465\pi\) | ||||
0.973434 | − | 0.228968i | \(-0.0735351\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 8.00000 | 0.331896 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | − 48.0000i | − 1.98796i | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 12.0000i | 0.495293i | 0.968850 | + | 0.247647i | \(0.0796572\pi\) | ||||
−0.968850 | + | 0.247647i | \(0.920343\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 5.00000 | 0.206021 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 12.0000i | 0.492781i | 0.969171 | + | 0.246390i | \(0.0792446\pi\) | ||||
−0.969171 | + | 0.246390i | \(0.920755\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | −24.0000 | −0.980613 | −0.490307 | − | 0.871550i | \(-0.663115\pi\) | ||||
−0.490307 | + | 0.871550i | \(0.663115\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | −17.0000 | −0.693444 | −0.346722 | − | 0.937968i | \(-0.612705\pi\) | ||||
−0.346722 | + | 0.937968i | \(0.612705\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 36.0000i | 1.46119i | 0.682808 | + | 0.730597i | \(0.260758\pi\) | ||||
−0.682808 | + | 0.730597i | \(0.739242\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | −8.00000 | −0.323645 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 6.00000i | 0.242338i | 0.992632 | + | 0.121169i | \(0.0386643\pi\) | ||||
−0.992632 | + | 0.121169i | \(0.961336\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | 36.0000i | 1.44931i | 0.689114 | + | 0.724653i | \(0.258000\pi\) | ||||
−0.689114 | + | 0.724653i | \(0.742000\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | −7.00000 | −0.281354 | −0.140677 | − | 0.990056i | \(-0.544928\pi\) | ||||
−0.140677 | + | 0.990056i | \(0.544928\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 0 | 0 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 0 | 0 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | −24.0000 | −0.956943 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 17.0000 | 0.676759 | 0.338380 | − | 0.941010i | \(-0.390121\pi\) | ||||
0.338380 | + | 0.941010i | \(0.390121\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 6.00000i | 0.237729i | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | −24.0000 | −0.947943 | −0.473972 | − | 0.880540i | \(-0.657180\pi\) | ||||
−0.473972 | + | 0.880540i | \(0.657180\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | 24.0000i | 0.946468i | 0.880937 | + | 0.473234i | \(0.156913\pi\) | ||||
−0.880937 | + | 0.473234i | \(0.843087\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | 48.0000i | 1.88707i | 0.331266 | + | 0.943537i | \(0.392524\pi\) | ||||
−0.331266 | + | 0.943537i | \(0.607476\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | −32.0000 | −1.25611 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | − 32.0000i | − 1.25226i | −0.779720 | − | 0.626128i | \(-0.784639\pi\) | ||||
0.779720 | − | 0.626128i | \(-0.215361\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | −12.0000 | −0.467454 | −0.233727 | − | 0.972302i | \(-0.575092\pi\) | ||||
−0.233727 | + | 0.972302i | \(0.575092\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | −42.0000 | −1.63361 | −0.816805 | − | 0.576913i | \(-0.804257\pi\) | ||||
−0.816805 | + | 0.576913i | \(0.804257\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 16.0000i | 0.619522i | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 28.0000 | 1.08093 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | − 30.0000i | − 1.15642i | −0.815890 | − | 0.578208i | \(-0.803752\pi\) | ||||
0.815890 | − | 0.578208i | \(-0.196248\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 28.0000i | 1.07613i | 0.842904 | + | 0.538064i | \(0.180844\pi\) | ||||
−0.842904 | + | 0.538064i | \(0.819156\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | −13.0000 | −0.498894 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 48.0000i | 1.83667i | 0.395805 | + | 0.918334i | \(0.370466\pi\) | ||||
−0.395805 | + | 0.918334i | \(0.629534\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 12.0000 | 0.457164 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | −8.00000 | −0.304334 | −0.152167 | − | 0.988355i | \(-0.548625\pi\) | ||||
−0.152167 | + | 0.988355i | \(0.548625\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 48.0000i | 1.81813i | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | −20.0000 | −0.755390 | −0.377695 | − | 0.925930i | \(-0.623283\pi\) | ||||
−0.377695 | + | 0.925930i | \(0.623283\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | − 6.00000i | − 0.226294i | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 12.0000i | 0.451306i | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | −29.0000 | −1.08912 | −0.544559 | − | 0.838723i | \(-0.683303\pi\) | ||||
−0.544559 | + | 0.838723i | \(0.683303\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 20.0000i | 0.749006i | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | −4.00000 | −0.149175 | −0.0745874 | − | 0.997214i | \(-0.523764\pi\) | ||||
−0.0745874 | + | 0.997214i | \(0.523764\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | −4.00000 | −0.148968 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 47.0000i | 1.74313i | 0.490277 | + | 0.871567i | \(0.336896\pi\) | ||||
−0.490277 | + | 0.871567i | \(0.663104\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 20.0000 | 0.739727 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 18.0000i | 0.664845i | 0.943131 | + | 0.332423i | \(0.107866\pi\) | ||||
−0.943131 | + | 0.332423i | \(0.892134\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | − 52.0000i | − 1.91544i | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | −48.0000 | −1.76571 | −0.882854 | − | 0.469647i | \(-0.844381\pi\) | ||||
−0.882854 | + | 0.469647i | \(0.844381\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | − 48.0000i | − 1.76095i | −0.474093 | − | 0.880475i | \(-0.657224\pi\) | ||||
0.474093 | − | 0.880475i | \(-0.342776\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 12.0000 | 0.438470 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | −12.0000 | −0.437886 | −0.218943 | − | 0.975738i | \(-0.570261\pi\) | ||||
−0.218943 | + | 0.975738i | \(0.570261\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | 43.0000i | 1.56286i | 0.623992 | + | 0.781431i | \(0.285510\pi\) | ||||
−0.623992 | + | 0.781431i | \(0.714490\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | −48.0000 | −1.74000 | −0.869999 | − | 0.493053i | \(-0.835881\pi\) | ||||
−0.869999 | + | 0.493053i | \(0.835881\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | − 7.00000i | − 0.253417i | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | − 8.00000i | − 0.288863i | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | 17.0000 | 0.613036 | 0.306518 | − | 0.951865i | \(-0.400836\pi\) | ||||
0.306518 | + | 0.951865i | \(0.400836\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | − 36.0000i | − 1.29483i | −0.762138 | − | 0.647415i | \(-0.775850\pi\) | ||||
0.762138 | − | 0.647415i | \(-0.224150\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 0 | 0 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | −12.0000 | −0.429945 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 48.0000 | 1.71758 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | − 7.00000i | − 0.249523i | −0.992187 | − | 0.124762i | \(-0.960183\pi\) | ||||
0.992187 | − | 0.124762i | \(-0.0398166\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 0 | 0 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 7.00000i | 0.248577i | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | − 24.0000i | − 0.850124i | −0.905164 | − | 0.425062i | \(-0.860252\pi\) | ||||
0.905164 | − | 0.425062i | \(-0.139748\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 32.0000 | 1.13208 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 24.0000i | 0.846942i | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | −36.0000 | −1.26569 | −0.632846 | − | 0.774277i | \(-0.718114\pi\) | ||||
−0.632846 | + | 0.774277i | \(0.718114\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | −53.0000 | −1.86108 | −0.930541 | − | 0.366188i | \(-0.880663\pi\) | ||||
−0.930541 | + | 0.366188i | \(0.880663\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 0 | 0 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 5.00000i | 0.174928i | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | −16.0000 | −0.558404 | −0.279202 | − | 0.960232i | \(-0.590070\pi\) | ||||
−0.279202 | + | 0.960232i | \(0.590070\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | − 31.0000i | − 1.08059i | −0.841475 | − | 0.540296i | \(-0.818312\pi\) | ||||
0.841475 | − | 0.540296i | \(-0.181688\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | 12.0000i | 0.417281i | 0.977992 | + | 0.208640i | \(0.0669038\pi\) | ||||
−0.977992 | + | 0.208640i | \(0.933096\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | −34.0000 | −1.18087 | −0.590434 | − | 0.807086i | \(-0.701044\pi\) | ||||
−0.590434 | + | 0.807086i | \(0.701044\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | − 24.0000i | − 0.831551i | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | −20.0000 | −0.690477 | −0.345238 | − | 0.938515i | \(-0.612202\pi\) | ||||
−0.345238 | + | 0.938515i | \(0.612202\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | −13.0000 | −0.448276 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | − 5.00000i | − 0.171802i | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 24.0000 | 0.822709 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | − 49.0000i | − 1.67773i | −0.544341 | − | 0.838864i | \(-0.683220\pi\) | ||||
0.544341 | − | 0.838864i | \(-0.316780\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | − 24.0000i | − 0.819824i | −0.912125 | − | 0.409912i | \(-0.865559\pi\) | ||||
0.912125 | − | 0.409912i | \(-0.134441\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | −40.0000 | −1.36478 | −0.682391 | − | 0.730987i | \(-0.739060\pi\) | ||||
−0.682391 | + | 0.730987i | \(0.739060\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | 24.0000i | 0.816970i | 0.912765 | + | 0.408485i | \(0.133943\pi\) | ||||
−0.912765 | + | 0.408485i | \(0.866057\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 48.0000 | 1.62829 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 13.0000 | 0.440488 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | − 19.0000i | − 0.641584i | −0.947150 | − | 0.320792i | \(-0.896051\pi\) | ||||
0.947150 | − | 0.320792i | \(-0.103949\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | −24.0000 | −0.808581 | −0.404290 | − | 0.914631i | \(-0.632481\pi\) | ||||
−0.404290 | + | 0.914631i | \(0.632481\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | 25.0000i | 0.841317i | 0.907219 | + | 0.420658i | \(0.138201\pi\) | ||||
−0.907219 | + | 0.420658i | \(0.861799\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | 8.00000i | 0.268614i | 0.990940 | + | 0.134307i | \(0.0428808\pi\) | ||||
−0.990940 | + | 0.134307i | \(0.957119\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | −12.0000 | −0.402467 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 8.00000i | 0.267710i | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 20.0000 | 0.667037 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | −48.0000 | −1.59911 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 0 | 0 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | 24.0000i | 0.796907i | 0.917189 | + | 0.398453i | \(0.130453\pi\) | ||||
−0.917189 | + | 0.398453i | \(0.869547\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | 40.0000 | 1.32526 | 0.662630 | − | 0.748947i | \(-0.269440\pi\) | ||||
0.662630 | + | 0.748947i | \(0.269440\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 32.0000i | 1.05905i | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | − 12.0000i | − 0.396275i | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | 5.00000 | 0.164935 | 0.0824674 | − | 0.996594i | \(-0.473720\pi\) | ||||
0.0824674 | + | 0.996594i | \(0.473720\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 12.0000i | 0.394985i | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 0 | 0 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 52.0000 | 1.70606 | 0.853032 | − | 0.521858i | \(-0.174761\pi\) | ||||
0.853032 | + | 0.521858i | \(0.174761\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 6.00000 | 0.196642 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | 29.0000i | 0.947389i | 0.880689 | + | 0.473694i | \(0.157080\pi\) | ||||
−0.880689 | + | 0.473694i | \(0.842920\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | −16.0000 | −0.521585 | −0.260793 | − | 0.965395i | \(-0.583984\pi\) | ||||
−0.260793 | + | 0.965395i | \(0.583984\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | − 48.0000i | − 1.56310i | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 44.0000i | 1.42981i | 0.699223 | + | 0.714904i | \(0.253530\pi\) | ||||
−0.699223 | + | 0.714904i | \(0.746470\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | −6.00000 | −0.194768 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | − 48.0000i | − 1.55487i | −0.628962 | − | 0.777436i | \(-0.716520\pi\) | ||||
0.628962 | − | 0.777436i | \(-0.283480\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | −8.00000 | −0.258333 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −6.00000 | −0.193548 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 0 | 0 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | 36.0000i | 1.15768i | 0.815440 | + | 0.578841i | \(0.196495\pi\) | ||||
−0.815440 | + | 0.578841i | \(0.803505\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | 32.0000 | 1.02693 | 0.513464 | − | 0.858111i | \(-0.328362\pi\) | ||||
0.513464 | + | 0.858111i | \(0.328362\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 0 | 0 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | 8.00000i | 0.255943i | 0.991778 | + | 0.127971i | \(0.0408466\pi\) | ||||
−0.991778 | + | 0.127971i | \(0.959153\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 0 | 0 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | 48.0000i | 1.53096i | 0.643458 | + | 0.765481i | \(0.277499\pi\) | ||||
−0.643458 | + | 0.765481i | \(0.722501\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | −20.0000 | −0.635963 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | 13.0000 | 0.412959 | 0.206479 | − | 0.978451i | \(-0.433799\pi\) | ||||
0.206479 | + | 0.978451i | \(0.433799\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0 | 0 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 42.0000i | 1.33015i | 0.746775 | + | 0.665077i | \(0.231601\pi\) | ||||
−0.746775 | + | 0.665077i | \(0.768399\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 3600.2.f.s.2449.1 | 2 | ||
3.2 | odd | 2 | 3600.2.f.d.2449.1 | 2 | |||
4.3 | odd | 2 | 1800.2.f.b.649.2 | 2 | |||
5.2 | odd | 4 | 3600.2.a.y.1.1 | 1 | |||
5.3 | odd | 4 | 3600.2.a.r.1.1 | 1 | |||
5.4 | even | 2 | inner | 3600.2.f.s.2449.2 | 2 | ||
12.11 | even | 2 | 1800.2.f.i.649.2 | 2 | |||
15.2 | even | 4 | 3600.2.a.w.1.1 | 1 | |||
15.8 | even | 4 | 3600.2.a.p.1.1 | 1 | |||
15.14 | odd | 2 | 3600.2.f.d.2449.2 | 2 | |||
20.3 | even | 4 | 1800.2.a.o.1.1 | yes | 1 | ||
20.7 | even | 4 | 1800.2.a.k.1.1 | ✓ | 1 | ||
20.19 | odd | 2 | 1800.2.f.b.649.1 | 2 | |||
60.23 | odd | 4 | 1800.2.a.p.1.1 | yes | 1 | ||
60.47 | odd | 4 | 1800.2.a.l.1.1 | yes | 1 | ||
60.59 | even | 2 | 1800.2.f.i.649.1 | 2 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
1800.2.a.k.1.1 | ✓ | 1 | 20.7 | even | 4 | ||
1800.2.a.l.1.1 | yes | 1 | 60.47 | odd | 4 | ||
1800.2.a.o.1.1 | yes | 1 | 20.3 | even | 4 | ||
1800.2.a.p.1.1 | yes | 1 | 60.23 | odd | 4 | ||
1800.2.f.b.649.1 | 2 | 20.19 | odd | 2 | |||
1800.2.f.b.649.2 | 2 | 4.3 | odd | 2 | |||
1800.2.f.i.649.1 | 2 | 60.59 | even | 2 | |||
1800.2.f.i.649.2 | 2 | 12.11 | even | 2 | |||
3600.2.a.p.1.1 | 1 | 15.8 | even | 4 | |||
3600.2.a.r.1.1 | 1 | 5.3 | odd | 4 | |||
3600.2.a.w.1.1 | 1 | 15.2 | even | 4 | |||
3600.2.a.y.1.1 | 1 | 5.2 | odd | 4 | |||
3600.2.f.d.2449.1 | 2 | 3.2 | odd | 2 | |||
3600.2.f.d.2449.2 | 2 | 15.14 | odd | 2 | |||
3600.2.f.s.2449.1 | 2 | 1.1 | even | 1 | trivial | ||
3600.2.f.s.2449.2 | 2 | 5.4 | even | 2 | inner |