# Properties

 Label 3600.2.f.q.2449.1 Level $3600$ Weight $2$ Character 3600.2449 Analytic conductor $28.746$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Learn more

## Newspace parameters

 Level: $$N$$ $$=$$ $$3600 = 2^{4} \cdot 3^{2} \cdot 5^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 3600.f (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$28.7461447277$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(i)$$ Defining polynomial: $$x^{2} + 1$$ Coefficient ring: $$\Z[a_1, \ldots, a_{7}]$$ Coefficient ring index: $$2$$ Twist minimal: no (minimal twist has level 360) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## Embedding invariants

 Embedding label 2449.1 Root $$-1.00000i$$ of defining polynomial Character $$\chi$$ $$=$$ 3600.2449 Dual form 3600.2.f.q.2449.2

## $q$-expansion

 $$f(q)$$ $$=$$ $$q-2.00000i q^{7} +O(q^{10})$$ $$q-2.00000i q^{7} +2.00000 q^{11} -4.00000i q^{13} +2.00000i q^{17} +4.00000 q^{19} -8.00000i q^{23} -10.0000 q^{29} -4.00000 q^{31} -8.00000i q^{43} +8.00000i q^{47} +3.00000 q^{49} +6.00000i q^{53} +14.0000 q^{59} -14.0000 q^{61} +4.00000i q^{67} +12.0000 q^{71} -6.00000i q^{73} -4.00000i q^{77} -12.0000 q^{79} -4.00000i q^{83} -12.0000 q^{89} -8.00000 q^{91} -14.0000i q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q + O(q^{10})$$ $$2q + 4q^{11} + 8q^{19} - 20q^{29} - 8q^{31} + 6q^{49} + 28q^{59} - 28q^{61} + 24q^{71} - 24q^{79} - 24q^{89} - 16q^{91} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/3600\mathbb{Z}\right)^\times$$.

 $$n$$ $$577$$ $$901$$ $$2801$$ $$3151$$ $$\chi(n)$$ $$-1$$ $$1$$ $$1$$ $$1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ 0 0
$$4$$ 0 0
$$5$$ 0 0
$$6$$ 0 0
$$7$$ − 2.00000i − 0.755929i −0.925820 0.377964i $$-0.876624\pi$$
0.925820 0.377964i $$-0.123376\pi$$
$$8$$ 0 0
$$9$$ 0 0
$$10$$ 0 0
$$11$$ 2.00000 0.603023 0.301511 0.953463i $$-0.402509\pi$$
0.301511 + 0.953463i $$0.402509\pi$$
$$12$$ 0 0
$$13$$ − 4.00000i − 1.10940i −0.832050 0.554700i $$-0.812833\pi$$
0.832050 0.554700i $$-0.187167\pi$$
$$14$$ 0 0
$$15$$ 0 0
$$16$$ 0 0
$$17$$ 2.00000i 0.485071i 0.970143 + 0.242536i $$0.0779791\pi$$
−0.970143 + 0.242536i $$0.922021\pi$$
$$18$$ 0 0
$$19$$ 4.00000 0.917663 0.458831 0.888523i $$-0.348268\pi$$
0.458831 + 0.888523i $$0.348268\pi$$
$$20$$ 0 0
$$21$$ 0 0
$$22$$ 0 0
$$23$$ − 8.00000i − 1.66812i −0.551677 0.834058i $$-0.686012\pi$$
0.551677 0.834058i $$-0.313988\pi$$
$$24$$ 0 0
$$25$$ 0 0
$$26$$ 0 0
$$27$$ 0 0
$$28$$ 0 0
$$29$$ −10.0000 −1.85695 −0.928477 0.371391i $$-0.878881\pi$$
−0.928477 + 0.371391i $$0.878881\pi$$
$$30$$ 0 0
$$31$$ −4.00000 −0.718421 −0.359211 0.933257i $$-0.616954\pi$$
−0.359211 + 0.933257i $$0.616954\pi$$
$$32$$ 0 0
$$33$$ 0 0
$$34$$ 0 0
$$35$$ 0 0
$$36$$ 0 0
$$37$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$38$$ 0 0
$$39$$ 0 0
$$40$$ 0 0
$$41$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$42$$ 0 0
$$43$$ − 8.00000i − 1.21999i −0.792406 0.609994i $$-0.791172\pi$$
0.792406 0.609994i $$-0.208828\pi$$
$$44$$ 0 0
$$45$$ 0 0
$$46$$ 0 0
$$47$$ 8.00000i 1.16692i 0.812142 + 0.583460i $$0.198301\pi$$
−0.812142 + 0.583460i $$0.801699\pi$$
$$48$$ 0 0
$$49$$ 3.00000 0.428571
$$50$$ 0 0
$$51$$ 0 0
$$52$$ 0 0
$$53$$ 6.00000i 0.824163i 0.911147 + 0.412082i $$0.135198\pi$$
−0.911147 + 0.412082i $$0.864802\pi$$
$$54$$ 0 0
$$55$$ 0 0
$$56$$ 0 0
$$57$$ 0 0
$$58$$ 0 0
$$59$$ 14.0000 1.82264 0.911322 0.411693i $$-0.135063\pi$$
0.911322 + 0.411693i $$0.135063\pi$$
$$60$$ 0 0
$$61$$ −14.0000 −1.79252 −0.896258 0.443533i $$-0.853725\pi$$
−0.896258 + 0.443533i $$0.853725\pi$$
$$62$$ 0 0
$$63$$ 0 0
$$64$$ 0 0
$$65$$ 0 0
$$66$$ 0 0
$$67$$ 4.00000i 0.488678i 0.969690 + 0.244339i $$0.0785709\pi$$
−0.969690 + 0.244339i $$0.921429\pi$$
$$68$$ 0 0
$$69$$ 0 0
$$70$$ 0 0
$$71$$ 12.0000 1.42414 0.712069 0.702109i $$-0.247758\pi$$
0.712069 + 0.702109i $$0.247758\pi$$
$$72$$ 0 0
$$73$$ − 6.00000i − 0.702247i −0.936329 0.351123i $$-0.885800\pi$$
0.936329 0.351123i $$-0.114200\pi$$
$$74$$ 0 0
$$75$$ 0 0
$$76$$ 0 0
$$77$$ − 4.00000i − 0.455842i
$$78$$ 0 0
$$79$$ −12.0000 −1.35011 −0.675053 0.737769i $$-0.735879\pi$$
−0.675053 + 0.737769i $$0.735879\pi$$
$$80$$ 0 0
$$81$$ 0 0
$$82$$ 0 0
$$83$$ − 4.00000i − 0.439057i −0.975606 0.219529i $$-0.929548\pi$$
0.975606 0.219529i $$-0.0704519\pi$$
$$84$$ 0 0
$$85$$ 0 0
$$86$$ 0 0
$$87$$ 0 0
$$88$$ 0 0
$$89$$ −12.0000 −1.27200 −0.635999 0.771690i $$-0.719412\pi$$
−0.635999 + 0.771690i $$0.719412\pi$$
$$90$$ 0 0
$$91$$ −8.00000 −0.838628
$$92$$ 0 0
$$93$$ 0 0
$$94$$ 0 0
$$95$$ 0 0
$$96$$ 0 0
$$97$$ − 14.0000i − 1.42148i −0.703452 0.710742i $$-0.748359\pi$$
0.703452 0.710742i $$-0.251641\pi$$
$$98$$ 0 0
$$99$$ 0 0
$$100$$ 0 0
$$101$$ −6.00000 −0.597022 −0.298511 0.954406i $$-0.596490\pi$$
−0.298511 + 0.954406i $$0.596490\pi$$
$$102$$ 0 0
$$103$$ − 14.0000i − 1.37946i −0.724066 0.689730i $$-0.757729\pi$$
0.724066 0.689730i $$-0.242271\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 0 0
$$107$$ − 12.0000i − 1.16008i −0.814587 0.580042i $$-0.803036\pi$$
0.814587 0.580042i $$-0.196964\pi$$
$$108$$ 0 0
$$109$$ −2.00000 −0.191565 −0.0957826 0.995402i $$-0.530535\pi$$
−0.0957826 + 0.995402i $$0.530535\pi$$
$$110$$ 0 0
$$111$$ 0 0
$$112$$ 0 0
$$113$$ 18.0000i 1.69330i 0.532152 + 0.846649i $$0.321383\pi$$
−0.532152 + 0.846649i $$0.678617\pi$$
$$114$$ 0 0
$$115$$ 0 0
$$116$$ 0 0
$$117$$ 0 0
$$118$$ 0 0
$$119$$ 4.00000 0.366679
$$120$$ 0 0
$$121$$ −7.00000 −0.636364
$$122$$ 0 0
$$123$$ 0 0
$$124$$ 0 0
$$125$$ 0 0
$$126$$ 0 0
$$127$$ − 18.0000i − 1.59724i −0.601834 0.798621i $$-0.705563\pi$$
0.601834 0.798621i $$-0.294437\pi$$
$$128$$ 0 0
$$129$$ 0 0
$$130$$ 0 0
$$131$$ −18.0000 −1.57267 −0.786334 0.617802i $$-0.788023\pi$$
−0.786334 + 0.617802i $$0.788023\pi$$
$$132$$ 0 0
$$133$$ − 8.00000i − 0.693688i
$$134$$ 0 0
$$135$$ 0 0
$$136$$ 0 0
$$137$$ − 2.00000i − 0.170872i −0.996344 0.0854358i $$-0.972772\pi$$
0.996344 0.0854358i $$-0.0272282\pi$$
$$138$$ 0 0
$$139$$ 12.0000 1.01783 0.508913 0.860818i $$-0.330047\pi$$
0.508913 + 0.860818i $$0.330047\pi$$
$$140$$ 0 0
$$141$$ 0 0
$$142$$ 0 0
$$143$$ − 8.00000i − 0.668994i
$$144$$ 0 0
$$145$$ 0 0
$$146$$ 0 0
$$147$$ 0 0
$$148$$ 0 0
$$149$$ 10.0000 0.819232 0.409616 0.912258i $$-0.365663\pi$$
0.409616 + 0.912258i $$0.365663\pi$$
$$150$$ 0 0
$$151$$ −8.00000 −0.651031 −0.325515 0.945537i $$-0.605538\pi$$
−0.325515 + 0.945537i $$0.605538\pi$$
$$152$$ 0 0
$$153$$ 0 0
$$154$$ 0 0
$$155$$ 0 0
$$156$$ 0 0
$$157$$ 4.00000i 0.319235i 0.987179 + 0.159617i $$0.0510260\pi$$
−0.987179 + 0.159617i $$0.948974\pi$$
$$158$$ 0 0
$$159$$ 0 0
$$160$$ 0 0
$$161$$ −16.0000 −1.26098
$$162$$ 0 0
$$163$$ 4.00000i 0.313304i 0.987654 + 0.156652i $$0.0500701\pi$$
−0.987654 + 0.156652i $$0.949930\pi$$
$$164$$ 0 0
$$165$$ 0 0
$$166$$ 0 0
$$167$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$168$$ 0 0
$$169$$ −3.00000 −0.230769
$$170$$ 0 0
$$171$$ 0 0
$$172$$ 0 0
$$173$$ − 2.00000i − 0.152057i −0.997106 0.0760286i $$-0.975776\pi$$
0.997106 0.0760286i $$-0.0242240\pi$$
$$174$$ 0 0
$$175$$ 0 0
$$176$$ 0 0
$$177$$ 0 0
$$178$$ 0 0
$$179$$ 14.0000 1.04641 0.523205 0.852207i $$-0.324736\pi$$
0.523205 + 0.852207i $$0.324736\pi$$
$$180$$ 0 0
$$181$$ 2.00000 0.148659 0.0743294 0.997234i $$-0.476318\pi$$
0.0743294 + 0.997234i $$0.476318\pi$$
$$182$$ 0 0
$$183$$ 0 0
$$184$$ 0 0
$$185$$ 0 0
$$186$$ 0 0
$$187$$ 4.00000i 0.292509i
$$188$$ 0 0
$$189$$ 0 0
$$190$$ 0 0
$$191$$ 4.00000 0.289430 0.144715 0.989473i $$-0.453773\pi$$
0.144715 + 0.989473i $$0.453773\pi$$
$$192$$ 0 0
$$193$$ − 22.0000i − 1.58359i −0.610784 0.791797i $$-0.709146\pi$$
0.610784 0.791797i $$-0.290854\pi$$
$$194$$ 0 0
$$195$$ 0 0
$$196$$ 0 0
$$197$$ − 2.00000i − 0.142494i −0.997459 0.0712470i $$-0.977302\pi$$
0.997459 0.0712470i $$-0.0226979\pi$$
$$198$$ 0 0
$$199$$ 8.00000 0.567105 0.283552 0.958957i $$-0.408487\pi$$
0.283552 + 0.958957i $$0.408487\pi$$
$$200$$ 0 0
$$201$$ 0 0
$$202$$ 0 0
$$203$$ 20.0000i 1.40372i
$$204$$ 0 0
$$205$$ 0 0
$$206$$ 0 0
$$207$$ 0 0
$$208$$ 0 0
$$209$$ 8.00000 0.553372
$$210$$ 0 0
$$211$$ −20.0000 −1.37686 −0.688428 0.725304i $$-0.741699\pi$$
−0.688428 + 0.725304i $$0.741699\pi$$
$$212$$ 0 0
$$213$$ 0 0
$$214$$ 0 0
$$215$$ 0 0
$$216$$ 0 0
$$217$$ 8.00000i 0.543075i
$$218$$ 0 0
$$219$$ 0 0
$$220$$ 0 0
$$221$$ 8.00000 0.538138
$$222$$ 0 0
$$223$$ − 22.0000i − 1.47323i −0.676313 0.736614i $$-0.736423\pi$$
0.676313 0.736614i $$-0.263577\pi$$
$$224$$ 0 0
$$225$$ 0 0
$$226$$ 0 0
$$227$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$228$$ 0 0
$$229$$ 2.00000 0.132164 0.0660819 0.997814i $$-0.478950\pi$$
0.0660819 + 0.997814i $$0.478950\pi$$
$$230$$ 0 0
$$231$$ 0 0
$$232$$ 0 0
$$233$$ − 18.0000i − 1.17922i −0.807688 0.589610i $$-0.799282\pi$$
0.807688 0.589610i $$-0.200718\pi$$
$$234$$ 0 0
$$235$$ 0 0
$$236$$ 0 0
$$237$$ 0 0
$$238$$ 0 0
$$239$$ −12.0000 −0.776215 −0.388108 0.921614i $$-0.626871\pi$$
−0.388108 + 0.921614i $$0.626871\pi$$
$$240$$ 0 0
$$241$$ −10.0000 −0.644157 −0.322078 0.946713i $$-0.604381\pi$$
−0.322078 + 0.946713i $$0.604381\pi$$
$$242$$ 0 0
$$243$$ 0 0
$$244$$ 0 0
$$245$$ 0 0
$$246$$ 0 0
$$247$$ − 16.0000i − 1.01806i
$$248$$ 0 0
$$249$$ 0 0
$$250$$ 0 0
$$251$$ 6.00000 0.378717 0.189358 0.981908i $$-0.439359\pi$$
0.189358 + 0.981908i $$0.439359\pi$$
$$252$$ 0 0
$$253$$ − 16.0000i − 1.00591i
$$254$$ 0 0
$$255$$ 0 0
$$256$$ 0 0
$$257$$ − 18.0000i − 1.12281i −0.827541 0.561405i $$-0.810261\pi$$
0.827541 0.561405i $$-0.189739\pi$$
$$258$$ 0 0
$$259$$ 0 0
$$260$$ 0 0
$$261$$ 0 0
$$262$$ 0 0
$$263$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$264$$ 0 0
$$265$$ 0 0
$$266$$ 0 0
$$267$$ 0 0
$$268$$ 0 0
$$269$$ −2.00000 −0.121942 −0.0609711 0.998140i $$-0.519420\pi$$
−0.0609711 + 0.998140i $$0.519420\pi$$
$$270$$ 0 0
$$271$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$272$$ 0 0
$$273$$ 0 0
$$274$$ 0 0
$$275$$ 0 0
$$276$$ 0 0
$$277$$ − 16.0000i − 0.961347i −0.876900 0.480673i $$-0.840392\pi$$
0.876900 0.480673i $$-0.159608\pi$$
$$278$$ 0 0
$$279$$ 0 0
$$280$$ 0 0
$$281$$ 28.0000 1.67034 0.835170 0.549992i $$-0.185369\pi$$
0.835170 + 0.549992i $$0.185369\pi$$
$$282$$ 0 0
$$283$$ − 4.00000i − 0.237775i −0.992908 0.118888i $$-0.962067\pi$$
0.992908 0.118888i $$-0.0379328\pi$$
$$284$$ 0 0
$$285$$ 0 0
$$286$$ 0 0
$$287$$ 0 0
$$288$$ 0 0
$$289$$ 13.0000 0.764706
$$290$$ 0 0
$$291$$ 0 0
$$292$$ 0 0
$$293$$ 2.00000i 0.116841i 0.998292 + 0.0584206i $$0.0186065\pi$$
−0.998292 + 0.0584206i $$0.981394\pi$$
$$294$$ 0 0
$$295$$ 0 0
$$296$$ 0 0
$$297$$ 0 0
$$298$$ 0 0
$$299$$ −32.0000 −1.85061
$$300$$ 0 0
$$301$$ −16.0000 −0.922225
$$302$$ 0 0
$$303$$ 0 0
$$304$$ 0 0
$$305$$ 0 0
$$306$$ 0 0
$$307$$ 32.0000i 1.82634i 0.407583 + 0.913168i $$0.366372\pi$$
−0.407583 + 0.913168i $$0.633628\pi$$
$$308$$ 0 0
$$309$$ 0 0
$$310$$ 0 0
$$311$$ −20.0000 −1.13410 −0.567048 0.823685i $$-0.691915\pi$$
−0.567048 + 0.823685i $$0.691915\pi$$
$$312$$ 0 0
$$313$$ 10.0000i 0.565233i 0.959233 + 0.282617i $$0.0912024\pi$$
−0.959233 + 0.282617i $$0.908798\pi$$
$$314$$ 0 0
$$315$$ 0 0
$$316$$ 0 0
$$317$$ 30.0000i 1.68497i 0.538721 + 0.842484i $$0.318908\pi$$
−0.538721 + 0.842484i $$0.681092\pi$$
$$318$$ 0 0
$$319$$ −20.0000 −1.11979
$$320$$ 0 0
$$321$$ 0 0
$$322$$ 0 0
$$323$$ 8.00000i 0.445132i
$$324$$ 0 0
$$325$$ 0 0
$$326$$ 0 0
$$327$$ 0 0
$$328$$ 0 0
$$329$$ 16.0000 0.882109
$$330$$ 0 0
$$331$$ 12.0000 0.659580 0.329790 0.944054i $$-0.393022\pi$$
0.329790 + 0.944054i $$0.393022\pi$$
$$332$$ 0 0
$$333$$ 0 0
$$334$$ 0 0
$$335$$ 0 0
$$336$$ 0 0
$$337$$ − 2.00000i − 0.108947i −0.998515 0.0544735i $$-0.982652\pi$$
0.998515 0.0544735i $$-0.0173480\pi$$
$$338$$ 0 0
$$339$$ 0 0
$$340$$ 0 0
$$341$$ −8.00000 −0.433224
$$342$$ 0 0
$$343$$ − 20.0000i − 1.07990i
$$344$$ 0 0
$$345$$ 0 0
$$346$$ 0 0
$$347$$ 16.0000i 0.858925i 0.903085 + 0.429463i $$0.141297\pi$$
−0.903085 + 0.429463i $$0.858703\pi$$
$$348$$ 0 0
$$349$$ 6.00000 0.321173 0.160586 0.987022i $$-0.448662\pi$$
0.160586 + 0.987022i $$0.448662\pi$$
$$350$$ 0 0
$$351$$ 0 0
$$352$$ 0 0
$$353$$ − 26.0000i − 1.38384i −0.721974 0.691920i $$-0.756765\pi$$
0.721974 0.691920i $$-0.243235\pi$$
$$354$$ 0 0
$$355$$ 0 0
$$356$$ 0 0
$$357$$ 0 0
$$358$$ 0 0
$$359$$ −24.0000 −1.26667 −0.633336 0.773877i $$-0.718315\pi$$
−0.633336 + 0.773877i $$0.718315\pi$$
$$360$$ 0 0
$$361$$ −3.00000 −0.157895
$$362$$ 0 0
$$363$$ 0 0
$$364$$ 0 0
$$365$$ 0 0
$$366$$ 0 0
$$367$$ − 26.0000i − 1.35719i −0.734513 0.678594i $$-0.762589\pi$$
0.734513 0.678594i $$-0.237411\pi$$
$$368$$ 0 0
$$369$$ 0 0
$$370$$ 0 0
$$371$$ 12.0000 0.623009
$$372$$ 0 0
$$373$$ 20.0000i 1.03556i 0.855514 + 0.517780i $$0.173242\pi$$
−0.855514 + 0.517780i $$0.826758\pi$$
$$374$$ 0 0
$$375$$ 0 0
$$376$$ 0 0
$$377$$ 40.0000i 2.06010i
$$378$$ 0 0
$$379$$ 28.0000 1.43826 0.719132 0.694874i $$-0.244540\pi$$
0.719132 + 0.694874i $$0.244540\pi$$
$$380$$ 0 0
$$381$$ 0 0
$$382$$ 0 0
$$383$$ 24.0000i 1.22634i 0.789950 + 0.613171i $$0.210106\pi$$
−0.789950 + 0.613171i $$0.789894\pi$$
$$384$$ 0 0
$$385$$ 0 0
$$386$$ 0 0
$$387$$ 0 0
$$388$$ 0 0
$$389$$ 18.0000 0.912636 0.456318 0.889817i $$-0.349168\pi$$
0.456318 + 0.889817i $$0.349168\pi$$
$$390$$ 0 0
$$391$$ 16.0000 0.809155
$$392$$ 0 0
$$393$$ 0 0
$$394$$ 0 0
$$395$$ 0 0
$$396$$ 0 0
$$397$$ − 8.00000i − 0.401508i −0.979642 0.200754i $$-0.935661\pi$$
0.979642 0.200754i $$-0.0643393\pi$$
$$398$$ 0 0
$$399$$ 0 0
$$400$$ 0 0
$$401$$ 12.0000 0.599251 0.299626 0.954057i $$-0.403138\pi$$
0.299626 + 0.954057i $$0.403138\pi$$
$$402$$ 0 0
$$403$$ 16.0000i 0.797017i
$$404$$ 0 0
$$405$$ 0 0
$$406$$ 0 0
$$407$$ 0 0
$$408$$ 0 0
$$409$$ −10.0000 −0.494468 −0.247234 0.968956i $$-0.579522\pi$$
−0.247234 + 0.968956i $$0.579522\pi$$
$$410$$ 0 0
$$411$$ 0 0
$$412$$ 0 0
$$413$$ − 28.0000i − 1.37779i
$$414$$ 0 0
$$415$$ 0 0
$$416$$ 0 0
$$417$$ 0 0
$$418$$ 0 0
$$419$$ −30.0000 −1.46560 −0.732798 0.680446i $$-0.761786\pi$$
−0.732798 + 0.680446i $$0.761786\pi$$
$$420$$ 0 0
$$421$$ 30.0000 1.46211 0.731055 0.682318i $$-0.239028\pi$$
0.731055 + 0.682318i $$0.239028\pi$$
$$422$$ 0 0
$$423$$ 0 0
$$424$$ 0 0
$$425$$ 0 0
$$426$$ 0 0
$$427$$ 28.0000i 1.35501i
$$428$$ 0 0
$$429$$ 0 0
$$430$$ 0 0
$$431$$ 16.0000 0.770693 0.385346 0.922772i $$-0.374082\pi$$
0.385346 + 0.922772i $$0.374082\pi$$
$$432$$ 0 0
$$433$$ 10.0000i 0.480569i 0.970702 + 0.240285i $$0.0772408\pi$$
−0.970702 + 0.240285i $$0.922759\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ 0 0
$$437$$ − 32.0000i − 1.53077i
$$438$$ 0 0
$$439$$ −32.0000 −1.52728 −0.763638 0.645644i $$-0.776589\pi$$
−0.763638 + 0.645644i $$0.776589\pi$$
$$440$$ 0 0
$$441$$ 0 0
$$442$$ 0 0
$$443$$ − 24.0000i − 1.14027i −0.821549 0.570137i $$-0.806890\pi$$
0.821549 0.570137i $$-0.193110\pi$$
$$444$$ 0 0
$$445$$ 0 0
$$446$$ 0 0
$$447$$ 0 0
$$448$$ 0 0
$$449$$ 12.0000 0.566315 0.283158 0.959073i $$-0.408618\pi$$
0.283158 + 0.959073i $$0.408618\pi$$
$$450$$ 0 0
$$451$$ 0 0
$$452$$ 0 0
$$453$$ 0 0
$$454$$ 0 0
$$455$$ 0 0
$$456$$ 0 0
$$457$$ 10.0000i 0.467780i 0.972263 + 0.233890i $$0.0751456\pi$$
−0.972263 + 0.233890i $$0.924854\pi$$
$$458$$ 0 0
$$459$$ 0 0
$$460$$ 0 0
$$461$$ 30.0000 1.39724 0.698620 0.715493i $$-0.253798\pi$$
0.698620 + 0.715493i $$0.253798\pi$$
$$462$$ 0 0
$$463$$ 30.0000i 1.39422i 0.716965 + 0.697109i $$0.245531\pi$$
−0.716965 + 0.697109i $$0.754469\pi$$
$$464$$ 0 0
$$465$$ 0 0
$$466$$ 0 0
$$467$$ − 20.0000i − 0.925490i −0.886492 0.462745i $$-0.846865\pi$$
0.886492 0.462745i $$-0.153135\pi$$
$$468$$ 0 0
$$469$$ 8.00000 0.369406
$$470$$ 0 0
$$471$$ 0 0
$$472$$ 0 0
$$473$$ − 16.0000i − 0.735681i
$$474$$ 0 0
$$475$$ 0 0
$$476$$ 0 0
$$477$$ 0 0
$$478$$ 0 0
$$479$$ 4.00000 0.182765 0.0913823 0.995816i $$-0.470871\pi$$
0.0913823 + 0.995816i $$0.470871\pi$$
$$480$$ 0 0
$$481$$ 0 0
$$482$$ 0 0
$$483$$ 0 0
$$484$$ 0 0
$$485$$ 0 0
$$486$$ 0 0
$$487$$ − 22.0000i − 0.996915i −0.866914 0.498458i $$-0.833900\pi$$
0.866914 0.498458i $$-0.166100\pi$$
$$488$$ 0 0
$$489$$ 0 0
$$490$$ 0 0
$$491$$ −18.0000 −0.812329 −0.406164 0.913800i $$-0.633134\pi$$
−0.406164 + 0.913800i $$0.633134\pi$$
$$492$$ 0 0
$$493$$ − 20.0000i − 0.900755i
$$494$$ 0 0
$$495$$ 0 0
$$496$$ 0 0
$$497$$ − 24.0000i − 1.07655i
$$498$$ 0 0
$$499$$ 20.0000 0.895323 0.447661 0.894203i $$-0.352257\pi$$
0.447661 + 0.894203i $$0.352257\pi$$
$$500$$ 0 0
$$501$$ 0 0
$$502$$ 0 0
$$503$$ 24.0000i 1.07011i 0.844818 + 0.535054i $$0.179709\pi$$
−0.844818 + 0.535054i $$0.820291\pi$$
$$504$$ 0 0
$$505$$ 0 0
$$506$$ 0 0
$$507$$ 0 0
$$508$$ 0 0
$$509$$ 14.0000 0.620539 0.310270 0.950649i $$-0.399581\pi$$
0.310270 + 0.950649i $$0.399581\pi$$
$$510$$ 0 0
$$511$$ −12.0000 −0.530849
$$512$$ 0 0
$$513$$ 0 0
$$514$$ 0 0
$$515$$ 0 0
$$516$$ 0 0
$$517$$ 16.0000i 0.703679i
$$518$$ 0 0
$$519$$ 0 0
$$520$$ 0 0
$$521$$ −20.0000 −0.876216 −0.438108 0.898922i $$-0.644351\pi$$
−0.438108 + 0.898922i $$0.644351\pi$$
$$522$$ 0 0
$$523$$ 28.0000i 1.22435i 0.790721 + 0.612177i $$0.209706\pi$$
−0.790721 + 0.612177i $$0.790294\pi$$
$$524$$ 0 0
$$525$$ 0 0
$$526$$ 0 0
$$527$$ − 8.00000i − 0.348485i
$$528$$ 0 0
$$529$$ −41.0000 −1.78261
$$530$$ 0 0
$$531$$ 0 0
$$532$$ 0 0
$$533$$ 0 0
$$534$$ 0 0
$$535$$ 0 0
$$536$$ 0 0
$$537$$ 0 0
$$538$$ 0 0
$$539$$ 6.00000 0.258438
$$540$$ 0 0
$$541$$ 10.0000 0.429934 0.214967 0.976621i $$-0.431036\pi$$
0.214967 + 0.976621i $$0.431036\pi$$
$$542$$ 0 0
$$543$$ 0 0
$$544$$ 0 0
$$545$$ 0 0
$$546$$ 0 0
$$547$$ − 8.00000i − 0.342055i −0.985266 0.171028i $$-0.945291\pi$$
0.985266 0.171028i $$-0.0547087\pi$$
$$548$$ 0 0
$$549$$ 0 0
$$550$$ 0 0
$$551$$ −40.0000 −1.70406
$$552$$ 0 0
$$553$$ 24.0000i 1.02058i
$$554$$ 0 0
$$555$$ 0 0
$$556$$ 0 0
$$557$$ 26.0000i 1.10166i 0.834619 + 0.550828i $$0.185688\pi$$
−0.834619 + 0.550828i $$0.814312\pi$$
$$558$$ 0 0
$$559$$ −32.0000 −1.35346
$$560$$ 0 0
$$561$$ 0 0
$$562$$ 0 0
$$563$$ − 8.00000i − 0.337160i −0.985688 0.168580i $$-0.946082\pi$$
0.985688 0.168580i $$-0.0539181\pi$$
$$564$$ 0 0
$$565$$ 0 0
$$566$$ 0 0
$$567$$ 0 0
$$568$$ 0 0
$$569$$ −20.0000 −0.838444 −0.419222 0.907884i $$-0.637697\pi$$
−0.419222 + 0.907884i $$0.637697\pi$$
$$570$$ 0 0
$$571$$ −4.00000 −0.167395 −0.0836974 0.996491i $$-0.526673\pi$$
−0.0836974 + 0.996491i $$0.526673\pi$$
$$572$$ 0 0
$$573$$ 0 0
$$574$$ 0 0
$$575$$ 0 0
$$576$$ 0 0
$$577$$ 26.0000i 1.08239i 0.840896 + 0.541197i $$0.182029\pi$$
−0.840896 + 0.541197i $$0.817971\pi$$
$$578$$ 0 0
$$579$$ 0 0
$$580$$ 0 0
$$581$$ −8.00000 −0.331896
$$582$$ 0 0
$$583$$ 12.0000i 0.496989i
$$584$$ 0 0
$$585$$ 0 0
$$586$$ 0 0
$$587$$ 36.0000i 1.48588i 0.669359 + 0.742940i $$0.266569\pi$$
−0.669359 + 0.742940i $$0.733431\pi$$
$$588$$ 0 0
$$589$$ −16.0000 −0.659269
$$590$$ 0 0
$$591$$ 0 0
$$592$$ 0 0
$$593$$ 42.0000i 1.72473i 0.506284 + 0.862367i $$0.331019\pi$$
−0.506284 + 0.862367i $$0.668981\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ 0 0
$$597$$ 0 0
$$598$$ 0 0
$$599$$ 24.0000 0.980613 0.490307 0.871550i $$-0.336885\pi$$
0.490307 + 0.871550i $$0.336885\pi$$
$$600$$ 0 0
$$601$$ 22.0000 0.897399 0.448699 0.893683i $$-0.351887\pi$$
0.448699 + 0.893683i $$0.351887\pi$$
$$602$$ 0 0
$$603$$ 0 0
$$604$$ 0 0
$$605$$ 0 0
$$606$$ 0 0
$$607$$ − 6.00000i − 0.243532i −0.992559 0.121766i $$-0.961144\pi$$
0.992559 0.121766i $$-0.0388558\pi$$
$$608$$ 0 0
$$609$$ 0 0
$$610$$ 0 0
$$611$$ 32.0000 1.29458
$$612$$ 0 0
$$613$$ 48.0000i 1.93870i 0.245680 + 0.969351i $$0.420989\pi$$
−0.245680 + 0.969351i $$0.579011\pi$$
$$614$$ 0 0
$$615$$ 0 0
$$616$$ 0 0
$$617$$ − 6.00000i − 0.241551i −0.992680 0.120775i $$-0.961462\pi$$
0.992680 0.120775i $$-0.0385381\pi$$
$$618$$ 0 0
$$619$$ 44.0000 1.76851 0.884255 0.467005i $$-0.154667\pi$$
0.884255 + 0.467005i $$0.154667\pi$$
$$620$$ 0 0
$$621$$ 0 0
$$622$$ 0 0
$$623$$ 24.0000i 0.961540i
$$624$$ 0 0
$$625$$ 0 0
$$626$$ 0 0
$$627$$ 0 0
$$628$$ 0 0
$$629$$ 0 0
$$630$$ 0 0
$$631$$ 20.0000 0.796187 0.398094 0.917345i $$-0.369672\pi$$
0.398094 + 0.917345i $$0.369672\pi$$
$$632$$ 0 0
$$633$$ 0 0
$$634$$ 0 0
$$635$$ 0 0
$$636$$ 0 0
$$637$$ − 12.0000i − 0.475457i
$$638$$ 0 0
$$639$$ 0 0
$$640$$ 0 0
$$641$$ −24.0000 −0.947943 −0.473972 0.880540i $$-0.657180\pi$$
−0.473972 + 0.880540i $$0.657180\pi$$
$$642$$ 0 0
$$643$$ 12.0000i 0.473234i 0.971603 + 0.236617i $$0.0760386\pi$$
−0.971603 + 0.236617i $$0.923961\pi$$
$$644$$ 0 0
$$645$$ 0 0
$$646$$ 0 0
$$647$$ − 24.0000i − 0.943537i −0.881722 0.471769i $$-0.843616\pi$$
0.881722 0.471769i $$-0.156384\pi$$
$$648$$ 0 0
$$649$$ 28.0000 1.09910
$$650$$ 0 0
$$651$$ 0 0
$$652$$ 0 0
$$653$$ − 14.0000i − 0.547862i −0.961749 0.273931i $$-0.911676\pi$$
0.961749 0.273931i $$-0.0883240\pi$$
$$654$$ 0 0
$$655$$ 0 0
$$656$$ 0 0
$$657$$ 0 0
$$658$$ 0 0
$$659$$ −6.00000 −0.233727 −0.116863 0.993148i $$-0.537284\pi$$
−0.116863 + 0.993148i $$0.537284\pi$$
$$660$$ 0 0
$$661$$ 18.0000 0.700119 0.350059 0.936727i $$-0.386161\pi$$
0.350059 + 0.936727i $$0.386161\pi$$
$$662$$ 0 0
$$663$$ 0 0
$$664$$ 0 0
$$665$$ 0 0
$$666$$ 0 0
$$667$$ 80.0000i 3.09761i
$$668$$ 0 0
$$669$$ 0 0
$$670$$ 0 0
$$671$$ −28.0000 −1.08093
$$672$$ 0 0
$$673$$ − 30.0000i − 1.15642i −0.815890 0.578208i $$-0.803752\pi$$
0.815890 0.578208i $$-0.196248\pi$$
$$674$$ 0 0
$$675$$ 0 0
$$676$$ 0 0
$$677$$ − 26.0000i − 0.999261i −0.866239 0.499631i $$-0.833469\pi$$
0.866239 0.499631i $$-0.166531\pi$$
$$678$$ 0 0
$$679$$ −28.0000 −1.07454
$$680$$ 0 0
$$681$$ 0 0
$$682$$ 0 0
$$683$$ 12.0000i 0.459167i 0.973289 + 0.229584i $$0.0737364\pi$$
−0.973289 + 0.229584i $$0.926264\pi$$
$$684$$ 0 0
$$685$$ 0 0
$$686$$ 0 0
$$687$$ 0 0
$$688$$ 0 0
$$689$$ 24.0000 0.914327
$$690$$ 0 0
$$691$$ 28.0000 1.06517 0.532585 0.846376i $$-0.321221\pi$$
0.532585 + 0.846376i $$0.321221\pi$$
$$692$$ 0 0
$$693$$ 0 0
$$694$$ 0 0
$$695$$ 0 0
$$696$$ 0 0
$$697$$ 0 0
$$698$$ 0 0
$$699$$ 0 0
$$700$$ 0 0
$$701$$ −22.0000 −0.830929 −0.415464 0.909610i $$-0.636381\pi$$
−0.415464 + 0.909610i $$0.636381\pi$$
$$702$$ 0 0
$$703$$ 0 0
$$704$$ 0 0
$$705$$ 0 0
$$706$$ 0 0
$$707$$ 12.0000i 0.451306i
$$708$$ 0 0
$$709$$ −14.0000 −0.525781 −0.262891 0.964826i $$-0.584676\pi$$
−0.262891 + 0.964826i $$0.584676\pi$$
$$710$$ 0 0
$$711$$ 0 0
$$712$$ 0 0
$$713$$ 32.0000i 1.19841i
$$714$$ 0 0
$$715$$ 0 0
$$716$$ 0 0
$$717$$ 0 0
$$718$$ 0 0
$$719$$ 40.0000 1.49175 0.745874 0.666087i $$-0.232032\pi$$
0.745874 + 0.666087i $$0.232032\pi$$
$$720$$ 0 0
$$721$$ −28.0000 −1.04277
$$722$$ 0 0
$$723$$ 0 0
$$724$$ 0 0
$$725$$ 0 0
$$726$$ 0 0
$$727$$ − 38.0000i − 1.40934i −0.709534 0.704671i $$-0.751095\pi$$
0.709534 0.704671i $$-0.248905\pi$$
$$728$$ 0 0
$$729$$ 0 0
$$730$$ 0 0
$$731$$ 16.0000 0.591781
$$732$$ 0 0
$$733$$ 24.0000i 0.886460i 0.896408 + 0.443230i $$0.146168\pi$$
−0.896408 + 0.443230i $$0.853832\pi$$
$$734$$ 0 0
$$735$$ 0 0
$$736$$ 0 0
$$737$$ 8.00000i 0.294684i
$$738$$ 0 0
$$739$$ 12.0000 0.441427 0.220714 0.975339i $$-0.429161\pi$$
0.220714 + 0.975339i $$0.429161\pi$$
$$740$$ 0 0
$$741$$ 0 0
$$742$$ 0 0
$$743$$ − 24.0000i − 0.880475i −0.897881 0.440237i $$-0.854894\pi$$
0.897881 0.440237i $$-0.145106\pi$$
$$744$$ 0 0
$$745$$ 0 0
$$746$$ 0 0
$$747$$ 0 0
$$748$$ 0 0
$$749$$ −24.0000 −0.876941
$$750$$ 0 0
$$751$$ 36.0000 1.31366 0.656829 0.754039i $$-0.271897\pi$$
0.656829 + 0.754039i $$0.271897\pi$$
$$752$$ 0 0
$$753$$ 0 0
$$754$$ 0 0
$$755$$ 0 0
$$756$$ 0 0
$$757$$ 32.0000i 1.16306i 0.813525 + 0.581530i $$0.197546\pi$$
−0.813525 + 0.581530i $$0.802454\pi$$
$$758$$ 0 0
$$759$$ 0 0
$$760$$ 0 0
$$761$$ 36.0000 1.30500 0.652499 0.757789i $$-0.273720\pi$$
0.652499 + 0.757789i $$0.273720\pi$$
$$762$$ 0 0
$$763$$ 4.00000i 0.144810i
$$764$$ 0 0
$$765$$ 0 0
$$766$$ 0 0
$$767$$ − 56.0000i − 2.02204i
$$768$$ 0 0
$$769$$ 50.0000 1.80305 0.901523 0.432731i $$-0.142450\pi$$
0.901523 + 0.432731i $$0.142450\pi$$
$$770$$ 0 0
$$771$$ 0 0
$$772$$ 0 0
$$773$$ 42.0000i 1.51064i 0.655359 + 0.755318i $$0.272517\pi$$
−0.655359 + 0.755318i $$0.727483\pi$$
$$774$$ 0 0
$$775$$ 0 0
$$776$$ 0 0
$$777$$ 0 0
$$778$$ 0 0
$$779$$ 0 0
$$780$$ 0 0
$$781$$ 24.0000 0.858788
$$782$$ 0 0
$$783$$ 0 0
$$784$$ 0 0
$$785$$ 0 0
$$786$$ 0 0
$$787$$ 28.0000i 0.998092i 0.866575 + 0.499046i $$0.166316\pi$$
−0.866575 + 0.499046i $$0.833684\pi$$
$$788$$ 0 0
$$789$$ 0 0
$$790$$ 0 0
$$791$$ 36.0000 1.28001
$$792$$ 0 0
$$793$$ 56.0000i 1.98862i
$$794$$ 0 0
$$795$$ 0 0
$$796$$ 0 0
$$797$$ − 30.0000i − 1.06265i −0.847167 0.531327i $$-0.821693\pi$$
0.847167 0.531327i $$-0.178307\pi$$
$$798$$ 0 0
$$799$$ −16.0000 −0.566039
$$800$$ 0 0
$$801$$ 0 0
$$802$$ 0 0
$$803$$ − 12.0000i − 0.423471i
$$804$$ 0 0
$$805$$ 0 0
$$806$$ 0 0
$$807$$ 0 0
$$808$$ 0 0
$$809$$ −24.0000 −0.843795 −0.421898 0.906644i $$-0.638636\pi$$
−0.421898 + 0.906644i $$0.638636\pi$$
$$810$$ 0 0
$$811$$ 28.0000 0.983213 0.491606 0.870817i $$-0.336410\pi$$
0.491606 + 0.870817i $$0.336410\pi$$
$$812$$ 0 0
$$813$$ 0 0
$$814$$ 0 0
$$815$$ 0 0
$$816$$ 0 0
$$817$$ − 32.0000i − 1.11954i
$$818$$ 0 0
$$819$$ 0 0
$$820$$ 0 0
$$821$$ −14.0000 −0.488603 −0.244302 0.969699i $$-0.578559\pi$$
−0.244302 + 0.969699i $$0.578559\pi$$
$$822$$ 0 0
$$823$$ − 2.00000i − 0.0697156i −0.999392 0.0348578i $$-0.988902\pi$$
0.999392 0.0348578i $$-0.0110978\pi$$
$$824$$ 0 0
$$825$$ 0 0
$$826$$ 0 0
$$827$$ − 24.0000i − 0.834562i −0.908778 0.417281i $$-0.862983\pi$$
0.908778 0.417281i $$-0.137017\pi$$
$$828$$ 0 0
$$829$$ 38.0000 1.31979 0.659897 0.751356i $$-0.270600\pi$$
0.659897 + 0.751356i $$0.270600\pi$$
$$830$$ 0 0
$$831$$ 0 0
$$832$$ 0 0
$$833$$ 6.00000i 0.207888i
$$834$$ 0 0
$$835$$ 0 0
$$836$$ 0 0
$$837$$ 0 0
$$838$$ 0 0
$$839$$ 32.0000 1.10476 0.552381 0.833592i $$-0.313719\pi$$
0.552381 + 0.833592i $$0.313719\pi$$
$$840$$ 0 0
$$841$$ 71.0000 2.44828
$$842$$ 0 0
$$843$$ 0 0
$$844$$ 0 0
$$845$$ 0 0
$$846$$ 0 0
$$847$$ 14.0000i 0.481046i
$$848$$ 0 0
$$849$$ 0 0
$$850$$ 0 0
$$851$$ 0 0
$$852$$ 0 0
$$853$$ 16.0000i 0.547830i 0.961754 + 0.273915i $$0.0883186\pi$$
−0.961754 + 0.273915i $$0.911681\pi$$
$$854$$ 0 0
$$855$$ 0 0
$$856$$ 0 0
$$857$$ 18.0000i 0.614868i 0.951569 + 0.307434i $$0.0994704\pi$$
−0.951569 + 0.307434i $$0.900530\pi$$
$$858$$ 0 0
$$859$$ −4.00000 −0.136478 −0.0682391 0.997669i $$-0.521738\pi$$
−0.0682391 + 0.997669i $$0.521738\pi$$
$$860$$ 0 0
$$861$$ 0 0
$$862$$ 0 0
$$863$$ − 48.0000i − 1.63394i −0.576681 0.816970i $$-0.695652\pi$$
0.576681 0.816970i $$-0.304348\pi$$
$$864$$ 0 0
$$865$$ 0 0
$$866$$ 0 0
$$867$$ 0 0
$$868$$ 0 0
$$869$$ −24.0000 −0.814144
$$870$$ 0 0
$$871$$ 16.0000 0.542139
$$872$$ 0 0
$$873$$ 0 0
$$874$$ 0 0
$$875$$ 0 0
$$876$$ 0 0
$$877$$ − 20.0000i − 0.675352i −0.941262 0.337676i $$-0.890359\pi$$
0.941262 0.337676i $$-0.109641\pi$$
$$878$$ 0 0
$$879$$ 0 0
$$880$$ 0 0
$$881$$ −36.0000 −1.21287 −0.606435 0.795133i $$-0.707401\pi$$
−0.606435 + 0.795133i $$0.707401\pi$$
$$882$$ 0 0
$$883$$ 44.0000i 1.48072i 0.672212 + 0.740359i $$0.265344\pi$$
−0.672212 + 0.740359i $$0.734656\pi$$
$$884$$ 0 0
$$885$$ 0 0
$$886$$ 0 0
$$887$$ 56.0000i 1.88030i 0.340766 + 0.940148i $$0.389313\pi$$
−0.340766 + 0.940148i $$0.610687\pi$$
$$888$$ 0 0
$$889$$ −36.0000 −1.20740
$$890$$ 0 0
$$891$$ 0 0
$$892$$ 0 0
$$893$$ 32.0000i 1.07084i
$$894$$ 0 0
$$895$$ 0 0
$$896$$ 0 0
$$897$$ 0 0
$$898$$ 0 0
$$899$$ 40.0000 1.33407
$$900$$ 0 0
$$901$$ −12.0000 −0.399778
$$902$$ 0 0
$$903$$ 0 0
$$904$$ 0 0
$$905$$ 0 0
$$906$$ 0 0
$$907$$ − 24.0000i − 0.796907i −0.917189 0.398453i $$-0.869547\pi$$
0.917189 0.398453i $$-0.130453\pi$$
$$908$$ 0 0
$$909$$ 0 0
$$910$$ 0 0
$$911$$ −16.0000 −0.530104 −0.265052 0.964234i $$-0.585389\pi$$
−0.265052 + 0.964234i $$0.585389\pi$$
$$912$$ 0 0
$$913$$ − 8.00000i − 0.264761i
$$914$$ 0 0
$$915$$ 0 0
$$916$$ 0 0
$$917$$ 36.0000i 1.18882i
$$918$$ 0 0
$$919$$ 20.0000 0.659739 0.329870 0.944027i $$-0.392995\pi$$
0.329870 + 0.944027i $$0.392995\pi$$
$$920$$ 0 0
$$921$$ 0 0
$$922$$ 0 0
$$923$$ − 48.0000i − 1.57994i
$$924$$ 0 0
$$925$$ 0 0
$$926$$ 0 0
$$927$$ 0 0
$$928$$ 0 0
$$929$$ −4.00000 −0.131236 −0.0656179 0.997845i $$-0.520902\pi$$
−0.0656179 + 0.997845i $$0.520902\pi$$
$$930$$ 0 0
$$931$$ 12.0000 0.393284
$$932$$ 0 0
$$933$$ 0 0
$$934$$ 0 0
$$935$$ 0 0
$$936$$ 0 0
$$937$$ 10.0000i 0.326686i 0.986569 + 0.163343i $$0.0522277\pi$$
−0.986569 + 0.163343i $$0.947772\pi$$
$$938$$ 0 0
$$939$$ 0 0
$$940$$ 0 0
$$941$$ 22.0000 0.717180 0.358590 0.933495i $$-0.383258\pi$$
0.358590 + 0.933495i $$0.383258\pi$$
$$942$$ 0 0
$$943$$ 0 0
$$944$$ 0 0
$$945$$ 0 0
$$946$$ 0 0
$$947$$ 56.0000i 1.81976i 0.414876 + 0.909878i $$0.363825\pi$$
−0.414876 + 0.909878i $$0.636175\pi$$
$$948$$ 0 0
$$949$$ −24.0000 −0.779073
$$950$$ 0 0
$$951$$ 0 0
$$952$$ 0 0
$$953$$ − 54.0000i − 1.74923i −0.484817 0.874616i $$-0.661114\pi$$
0.484817 0.874616i $$-0.338886\pi$$
$$954$$ 0 0
$$955$$ 0 0
$$956$$ 0 0
$$957$$ 0 0
$$958$$ 0 0
$$959$$ −4.00000 −0.129167
$$960$$ 0 0
$$961$$ −15.0000 −0.483871
$$962$$ 0 0
$$963$$ 0 0
$$964$$ 0 0
$$965$$ 0 0
$$966$$ 0 0
$$967$$ − 18.0000i − 0.578841i −0.957202 0.289420i $$-0.906537\pi$$
0.957202 0.289420i $$-0.0934626\pi$$
$$968$$ 0 0
$$969$$ 0 0
$$970$$ 0 0
$$971$$ −2.00000 −0.0641831 −0.0320915 0.999485i $$-0.510217\pi$$
−0.0320915 + 0.999485i $$0.510217\pi$$
$$972$$ 0 0
$$973$$ − 24.0000i − 0.769405i
$$974$$ 0 0
$$975$$ 0 0
$$976$$ 0 0
$$977$$ 2.00000i 0.0639857i 0.999488 + 0.0319928i $$0.0101854\pi$$
−0.999488 + 0.0319928i $$0.989815\pi$$
$$978$$ 0 0
$$979$$ −24.0000 −0.767043
$$980$$ 0 0
$$981$$ 0 0
$$982$$ 0 0
$$983$$ 24.0000i 0.765481i 0.923856 + 0.382741i $$0.125020\pi$$
−0.923856 + 0.382741i $$0.874980\pi$$
$$984$$ 0 0
$$985$$ 0 0
$$986$$ 0 0
$$987$$ 0 0
$$988$$ 0 0
$$989$$ −64.0000 −2.03508
$$990$$ 0 0
$$991$$ −8.00000 −0.254128 −0.127064 0.991894i $$-0.540555\pi$$
−0.127064 + 0.991894i $$0.540555\pi$$
$$992$$ 0 0
$$993$$ 0 0
$$994$$ 0 0
$$995$$ 0 0
$$996$$ 0 0
$$997$$ 36.0000i 1.14013i 0.821599 + 0.570066i $$0.193082\pi$$
−0.821599 + 0.570066i $$0.806918\pi$$
$$998$$ 0 0
$$999$$ 0 0
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

## Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3600.2.f.q.2449.1 2
3.2 odd 2 3600.2.f.g.2449.1 2
4.3 odd 2 1800.2.f.d.649.2 2
5.2 odd 4 3600.2.a.bh.1.1 1
5.3 odd 4 720.2.a.i.1.1 1
5.4 even 2 inner 3600.2.f.q.2449.2 2
12.11 even 2 1800.2.f.h.649.2 2
15.2 even 4 3600.2.a.bd.1.1 1
15.8 even 4 720.2.a.a.1.1 1
15.14 odd 2 3600.2.f.g.2449.2 2
20.3 even 4 360.2.a.d.1.1 yes 1
20.7 even 4 1800.2.a.f.1.1 1
20.19 odd 2 1800.2.f.d.649.1 2
40.3 even 4 2880.2.a.n.1.1 1
40.13 odd 4 2880.2.a.e.1.1 1
60.23 odd 4 360.2.a.c.1.1 1
60.47 odd 4 1800.2.a.i.1.1 1
60.59 even 2 1800.2.f.h.649.1 2
120.53 even 4 2880.2.a.w.1.1 1
120.83 odd 4 2880.2.a.bd.1.1 1
180.23 odd 12 3240.2.q.n.2161.1 2
180.43 even 12 3240.2.q.d.1081.1 2
180.83 odd 12 3240.2.q.n.1081.1 2
180.103 even 12 3240.2.q.d.2161.1 2

By twisted newform
Twist Min Dim Char Parity Ord Type
360.2.a.c.1.1 1 60.23 odd 4
360.2.a.d.1.1 yes 1 20.3 even 4
720.2.a.a.1.1 1 15.8 even 4
720.2.a.i.1.1 1 5.3 odd 4
1800.2.a.f.1.1 1 20.7 even 4
1800.2.a.i.1.1 1 60.47 odd 4
1800.2.f.d.649.1 2 20.19 odd 2
1800.2.f.d.649.2 2 4.3 odd 2
1800.2.f.h.649.1 2 60.59 even 2
1800.2.f.h.649.2 2 12.11 even 2
2880.2.a.e.1.1 1 40.13 odd 4
2880.2.a.n.1.1 1 40.3 even 4
2880.2.a.w.1.1 1 120.53 even 4
2880.2.a.bd.1.1 1 120.83 odd 4
3240.2.q.d.1081.1 2 180.43 even 12
3240.2.q.d.2161.1 2 180.103 even 12
3240.2.q.n.1081.1 2 180.83 odd 12
3240.2.q.n.2161.1 2 180.23 odd 12
3600.2.a.bd.1.1 1 15.2 even 4
3600.2.a.bh.1.1 1 5.2 odd 4
3600.2.f.g.2449.1 2 3.2 odd 2
3600.2.f.g.2449.2 2 15.14 odd 2
3600.2.f.q.2449.1 2 1.1 even 1 trivial
3600.2.f.q.2449.2 2 5.4 even 2 inner