# Properties

 Label 3600.2.f.o Level $3600$ Weight $2$ Character orbit 3600.f Analytic conductor $28.746$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$3600 = 2^{4} \cdot 3^{2} \cdot 5^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 3600.f (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$28.7461447277$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-1})$$ Defining polynomial: $$x^{2} + 1$$ Coefficient ring: $$\Z[a_1, \ldots, a_{37}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 600) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of $$i = \sqrt{-1}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + 3 i q^{7} +O(q^{10})$$ $$q + 3 i q^{7} + 2 q^{11} -3 i q^{13} + 6 i q^{17} -7 q^{19} + 6 i q^{23} -2 q^{29} + 5 q^{31} -10 i q^{37} -12 q^{41} -3 i q^{43} + 10 i q^{47} -2 q^{49} + 6 q^{59} -13 q^{61} + 7 i q^{67} -4 q^{71} -6 i q^{73} + 6 i q^{77} -8 q^{79} -6 i q^{83} + 16 q^{89} + 9 q^{91} + 7 i q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q + O(q^{10})$$ $$2q + 4q^{11} - 14q^{19} - 4q^{29} + 10q^{31} - 24q^{41} - 4q^{49} + 12q^{59} - 26q^{61} - 8q^{71} - 16q^{79} + 32q^{89} + 18q^{91} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/3600\mathbb{Z}\right)^\times$$.

 $$n$$ $$577$$ $$901$$ $$2801$$ $$3151$$ $$\chi(n)$$ $$-1$$ $$1$$ $$1$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
2449.1
 − 1.00000i 1.00000i
0 0 0 0 0 3.00000i 0 0 0
2449.2 0 0 0 0 0 3.00000i 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3600.2.f.o 2
3.b odd 2 1 1200.2.f.c 2
4.b odd 2 1 1800.2.f.e 2
5.b even 2 1 inner 3600.2.f.o 2
5.c odd 4 1 3600.2.a.i 1
5.c odd 4 1 3600.2.a.bl 1
12.b even 2 1 600.2.f.d 2
15.d odd 2 1 1200.2.f.c 2
15.e even 4 1 1200.2.a.b 1
15.e even 4 1 1200.2.a.q 1
20.d odd 2 1 1800.2.f.e 2
20.e even 4 1 1800.2.a.e 1
20.e even 4 1 1800.2.a.t 1
24.f even 2 1 4800.2.f.k 2
24.h odd 2 1 4800.2.f.z 2
60.h even 2 1 600.2.f.d 2
60.l odd 4 1 600.2.a.b 1
60.l odd 4 1 600.2.a.i yes 1
120.i odd 2 1 4800.2.f.z 2
120.m even 2 1 4800.2.f.k 2
120.q odd 4 1 4800.2.a.bc 1
120.q odd 4 1 4800.2.a.bp 1
120.w even 4 1 4800.2.a.bd 1
120.w even 4 1 4800.2.a.bs 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
600.2.a.b 1 60.l odd 4 1
600.2.a.i yes 1 60.l odd 4 1
600.2.f.d 2 12.b even 2 1
600.2.f.d 2 60.h even 2 1
1200.2.a.b 1 15.e even 4 1
1200.2.a.q 1 15.e even 4 1
1200.2.f.c 2 3.b odd 2 1
1200.2.f.c 2 15.d odd 2 1
1800.2.a.e 1 20.e even 4 1
1800.2.a.t 1 20.e even 4 1
1800.2.f.e 2 4.b odd 2 1
1800.2.f.e 2 20.d odd 2 1
3600.2.a.i 1 5.c odd 4 1
3600.2.a.bl 1 5.c odd 4 1
3600.2.f.o 2 1.a even 1 1 trivial
3600.2.f.o 2 5.b even 2 1 inner
4800.2.a.bc 1 120.q odd 4 1
4800.2.a.bd 1 120.w even 4 1
4800.2.a.bp 1 120.q odd 4 1
4800.2.a.bs 1 120.w even 4 1
4800.2.f.k 2 24.f even 2 1
4800.2.f.k 2 120.m even 2 1
4800.2.f.z 2 24.h odd 2 1
4800.2.f.z 2 120.i odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(3600, [\chi])$$:

 $$T_{7}^{2} + 9$$ $$T_{11} - 2$$ $$T_{13}^{2} + 9$$ $$T_{17}^{2} + 36$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2}$$
$5$ $$T^{2}$$
$7$ $$9 + T^{2}$$
$11$ $$( -2 + T )^{2}$$
$13$ $$9 + T^{2}$$
$17$ $$36 + T^{2}$$
$19$ $$( 7 + T )^{2}$$
$23$ $$36 + T^{2}$$
$29$ $$( 2 + T )^{2}$$
$31$ $$( -5 + T )^{2}$$
$37$ $$100 + T^{2}$$
$41$ $$( 12 + T )^{2}$$
$43$ $$9 + T^{2}$$
$47$ $$100 + T^{2}$$
$53$ $$T^{2}$$
$59$ $$( -6 + T )^{2}$$
$61$ $$( 13 + T )^{2}$$
$67$ $$49 + T^{2}$$
$71$ $$( 4 + T )^{2}$$
$73$ $$36 + T^{2}$$
$79$ $$( 8 + T )^{2}$$
$83$ $$36 + T^{2}$$
$89$ $$( -16 + T )^{2}$$
$97$ $$49 + T^{2}$$