# Properties

 Label 3600.2.a.bq.1.1 Level $3600$ Weight $2$ Character 3600.1 Self dual yes Analytic conductor $28.746$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$3600 = 2^{4} \cdot 3^{2} \cdot 5^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 3600.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$28.7461447277$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 600) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

## Embedding invariants

 Embedding label 1.1 Character $$\chi$$ $$=$$ 3600.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+5.00000 q^{7} +O(q^{10})$$ $$q+5.00000 q^{7} -6.00000 q^{11} -3.00000 q^{13} +2.00000 q^{17} -1.00000 q^{19} -2.00000 q^{23} -6.00000 q^{29} -3.00000 q^{31} -6.00000 q^{37} -4.00000 q^{41} -11.0000 q^{43} -10.0000 q^{47} +18.0000 q^{49} +8.00000 q^{53} -6.00000 q^{59} +3.00000 q^{61} +1.00000 q^{67} -12.0000 q^{71} +10.0000 q^{73} -30.0000 q^{77} +8.00000 q^{79} -6.00000 q^{83} +16.0000 q^{89} -15.0000 q^{91} -7.00000 q^{97} +O(q^{100})$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ 0 0
$$4$$ 0 0
$$5$$ 0 0
$$6$$ 0 0
$$7$$ 5.00000 1.88982 0.944911 0.327327i $$-0.106148\pi$$
0.944911 + 0.327327i $$0.106148\pi$$
$$8$$ 0 0
$$9$$ 0 0
$$10$$ 0 0
$$11$$ −6.00000 −1.80907 −0.904534 0.426401i $$-0.859781\pi$$
−0.904534 + 0.426401i $$0.859781\pi$$
$$12$$ 0 0
$$13$$ −3.00000 −0.832050 −0.416025 0.909353i $$-0.636577\pi$$
−0.416025 + 0.909353i $$0.636577\pi$$
$$14$$ 0 0
$$15$$ 0 0
$$16$$ 0 0
$$17$$ 2.00000 0.485071 0.242536 0.970143i $$-0.422021\pi$$
0.242536 + 0.970143i $$0.422021\pi$$
$$18$$ 0 0
$$19$$ −1.00000 −0.229416 −0.114708 0.993399i $$-0.536593\pi$$
−0.114708 + 0.993399i $$0.536593\pi$$
$$20$$ 0 0
$$21$$ 0 0
$$22$$ 0 0
$$23$$ −2.00000 −0.417029 −0.208514 0.978019i $$-0.566863\pi$$
−0.208514 + 0.978019i $$0.566863\pi$$
$$24$$ 0 0
$$25$$ 0 0
$$26$$ 0 0
$$27$$ 0 0
$$28$$ 0 0
$$29$$ −6.00000 −1.11417 −0.557086 0.830455i $$-0.688081\pi$$
−0.557086 + 0.830455i $$0.688081\pi$$
$$30$$ 0 0
$$31$$ −3.00000 −0.538816 −0.269408 0.963026i $$-0.586828\pi$$
−0.269408 + 0.963026i $$0.586828\pi$$
$$32$$ 0 0
$$33$$ 0 0
$$34$$ 0 0
$$35$$ 0 0
$$36$$ 0 0
$$37$$ −6.00000 −0.986394 −0.493197 0.869918i $$-0.664172\pi$$
−0.493197 + 0.869918i $$0.664172\pi$$
$$38$$ 0 0
$$39$$ 0 0
$$40$$ 0 0
$$41$$ −4.00000 −0.624695 −0.312348 0.949968i $$-0.601115\pi$$
−0.312348 + 0.949968i $$0.601115\pi$$
$$42$$ 0 0
$$43$$ −11.0000 −1.67748 −0.838742 0.544529i $$-0.816708\pi$$
−0.838742 + 0.544529i $$0.816708\pi$$
$$44$$ 0 0
$$45$$ 0 0
$$46$$ 0 0
$$47$$ −10.0000 −1.45865 −0.729325 0.684167i $$-0.760166\pi$$
−0.729325 + 0.684167i $$0.760166\pi$$
$$48$$ 0 0
$$49$$ 18.0000 2.57143
$$50$$ 0 0
$$51$$ 0 0
$$52$$ 0 0
$$53$$ 8.00000 1.09888 0.549442 0.835532i $$-0.314840\pi$$
0.549442 + 0.835532i $$0.314840\pi$$
$$54$$ 0 0
$$55$$ 0 0
$$56$$ 0 0
$$57$$ 0 0
$$58$$ 0 0
$$59$$ −6.00000 −0.781133 −0.390567 0.920575i $$-0.627721\pi$$
−0.390567 + 0.920575i $$0.627721\pi$$
$$60$$ 0 0
$$61$$ 3.00000 0.384111 0.192055 0.981384i $$-0.438485\pi$$
0.192055 + 0.981384i $$0.438485\pi$$
$$62$$ 0 0
$$63$$ 0 0
$$64$$ 0 0
$$65$$ 0 0
$$66$$ 0 0
$$67$$ 1.00000 0.122169 0.0610847 0.998133i $$-0.480544\pi$$
0.0610847 + 0.998133i $$0.480544\pi$$
$$68$$ 0 0
$$69$$ 0 0
$$70$$ 0 0
$$71$$ −12.0000 −1.42414 −0.712069 0.702109i $$-0.752242\pi$$
−0.712069 + 0.702109i $$0.752242\pi$$
$$72$$ 0 0
$$73$$ 10.0000 1.17041 0.585206 0.810885i $$-0.301014\pi$$
0.585206 + 0.810885i $$0.301014\pi$$
$$74$$ 0 0
$$75$$ 0 0
$$76$$ 0 0
$$77$$ −30.0000 −3.41882
$$78$$ 0 0
$$79$$ 8.00000 0.900070 0.450035 0.893011i $$-0.351411\pi$$
0.450035 + 0.893011i $$0.351411\pi$$
$$80$$ 0 0
$$81$$ 0 0
$$82$$ 0 0
$$83$$ −6.00000 −0.658586 −0.329293 0.944228i $$-0.606810\pi$$
−0.329293 + 0.944228i $$0.606810\pi$$
$$84$$ 0 0
$$85$$ 0 0
$$86$$ 0 0
$$87$$ 0 0
$$88$$ 0 0
$$89$$ 16.0000 1.69600 0.847998 0.529999i $$-0.177808\pi$$
0.847998 + 0.529999i $$0.177808\pi$$
$$90$$ 0 0
$$91$$ −15.0000 −1.57243
$$92$$ 0 0
$$93$$ 0 0
$$94$$ 0 0
$$95$$ 0 0
$$96$$ 0 0
$$97$$ −7.00000 −0.710742 −0.355371 0.934725i $$-0.615646\pi$$
−0.355371 + 0.934725i $$0.615646\pi$$
$$98$$ 0 0
$$99$$ 0 0
$$100$$ 0 0
$$101$$ 8.00000 0.796030 0.398015 0.917379i $$-0.369699\pi$$
0.398015 + 0.917379i $$0.369699\pi$$
$$102$$ 0 0
$$103$$ −4.00000 −0.394132 −0.197066 0.980390i $$-0.563141\pi$$
−0.197066 + 0.980390i $$0.563141\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 0 0
$$107$$ −8.00000 −0.773389 −0.386695 0.922208i $$-0.626383\pi$$
−0.386695 + 0.922208i $$0.626383\pi$$
$$108$$ 0 0
$$109$$ −7.00000 −0.670478 −0.335239 0.942133i $$-0.608817\pi$$
−0.335239 + 0.942133i $$0.608817\pi$$
$$110$$ 0 0
$$111$$ 0 0
$$112$$ 0 0
$$113$$ −12.0000 −1.12887 −0.564433 0.825479i $$-0.690905\pi$$
−0.564433 + 0.825479i $$0.690905\pi$$
$$114$$ 0 0
$$115$$ 0 0
$$116$$ 0 0
$$117$$ 0 0
$$118$$ 0 0
$$119$$ 10.0000 0.916698
$$120$$ 0 0
$$121$$ 25.0000 2.27273
$$122$$ 0 0
$$123$$ 0 0
$$124$$ 0 0
$$125$$ 0 0
$$126$$ 0 0
$$127$$ −8.00000 −0.709885 −0.354943 0.934888i $$-0.615500\pi$$
−0.354943 + 0.934888i $$0.615500\pi$$
$$128$$ 0 0
$$129$$ 0 0
$$130$$ 0 0
$$131$$ 16.0000 1.39793 0.698963 0.715158i $$-0.253645\pi$$
0.698963 + 0.715158i $$0.253645\pi$$
$$132$$ 0 0
$$133$$ −5.00000 −0.433555
$$134$$ 0 0
$$135$$ 0 0
$$136$$ 0 0
$$137$$ −6.00000 −0.512615 −0.256307 0.966595i $$-0.582506\pi$$
−0.256307 + 0.966595i $$0.582506\pi$$
$$138$$ 0 0
$$139$$ 12.0000 1.01783 0.508913 0.860818i $$-0.330047\pi$$
0.508913 + 0.860818i $$0.330047\pi$$
$$140$$ 0 0
$$141$$ 0 0
$$142$$ 0 0
$$143$$ 18.0000 1.50524
$$144$$ 0 0
$$145$$ 0 0
$$146$$ 0 0
$$147$$ 0 0
$$148$$ 0 0
$$149$$ 6.00000 0.491539 0.245770 0.969328i $$-0.420959\pi$$
0.245770 + 0.969328i $$0.420959\pi$$
$$150$$ 0 0
$$151$$ −9.00000 −0.732410 −0.366205 0.930534i $$-0.619343\pi$$
−0.366205 + 0.930534i $$0.619343\pi$$
$$152$$ 0 0
$$153$$ 0 0
$$154$$ 0 0
$$155$$ 0 0
$$156$$ 0 0
$$157$$ 7.00000 0.558661 0.279330 0.960195i $$-0.409888\pi$$
0.279330 + 0.960195i $$0.409888\pi$$
$$158$$ 0 0
$$159$$ 0 0
$$160$$ 0 0
$$161$$ −10.0000 −0.788110
$$162$$ 0 0
$$163$$ 7.00000 0.548282 0.274141 0.961689i $$-0.411606\pi$$
0.274141 + 0.961689i $$0.411606\pi$$
$$164$$ 0 0
$$165$$ 0 0
$$166$$ 0 0
$$167$$ 16.0000 1.23812 0.619059 0.785345i $$-0.287514\pi$$
0.619059 + 0.785345i $$0.287514\pi$$
$$168$$ 0 0
$$169$$ −4.00000 −0.307692
$$170$$ 0 0
$$171$$ 0 0
$$172$$ 0 0
$$173$$ 6.00000 0.456172 0.228086 0.973641i $$-0.426753\pi$$
0.228086 + 0.973641i $$0.426753\pi$$
$$174$$ 0 0
$$175$$ 0 0
$$176$$ 0 0
$$177$$ 0 0
$$178$$ 0 0
$$179$$ 2.00000 0.149487 0.0747435 0.997203i $$-0.476186\pi$$
0.0747435 + 0.997203i $$0.476186\pi$$
$$180$$ 0 0
$$181$$ −19.0000 −1.41226 −0.706129 0.708083i $$-0.749560\pi$$
−0.706129 + 0.708083i $$0.749560\pi$$
$$182$$ 0 0
$$183$$ 0 0
$$184$$ 0 0
$$185$$ 0 0
$$186$$ 0 0
$$187$$ −12.0000 −0.877527
$$188$$ 0 0
$$189$$ 0 0
$$190$$ 0 0
$$191$$ −10.0000 −0.723575 −0.361787 0.932261i $$-0.617833\pi$$
−0.361787 + 0.932261i $$0.617833\pi$$
$$192$$ 0 0
$$193$$ 3.00000 0.215945 0.107972 0.994154i $$-0.465564\pi$$
0.107972 + 0.994154i $$0.465564\pi$$
$$194$$ 0 0
$$195$$ 0 0
$$196$$ 0 0
$$197$$ 2.00000 0.142494 0.0712470 0.997459i $$-0.477302\pi$$
0.0712470 + 0.997459i $$0.477302\pi$$
$$198$$ 0 0
$$199$$ −21.0000 −1.48865 −0.744325 0.667817i $$-0.767229\pi$$
−0.744325 + 0.667817i $$0.767229\pi$$
$$200$$ 0 0
$$201$$ 0 0
$$202$$ 0 0
$$203$$ −30.0000 −2.10559
$$204$$ 0 0
$$205$$ 0 0
$$206$$ 0 0
$$207$$ 0 0
$$208$$ 0 0
$$209$$ 6.00000 0.415029
$$210$$ 0 0
$$211$$ 15.0000 1.03264 0.516321 0.856395i $$-0.327301\pi$$
0.516321 + 0.856395i $$0.327301\pi$$
$$212$$ 0 0
$$213$$ 0 0
$$214$$ 0 0
$$215$$ 0 0
$$216$$ 0 0
$$217$$ −15.0000 −1.01827
$$218$$ 0 0
$$219$$ 0 0
$$220$$ 0 0
$$221$$ −6.00000 −0.403604
$$222$$ 0 0
$$223$$ −3.00000 −0.200895 −0.100447 0.994942i $$-0.532027\pi$$
−0.100447 + 0.994942i $$0.532027\pi$$
$$224$$ 0 0
$$225$$ 0 0
$$226$$ 0 0
$$227$$ −12.0000 −0.796468 −0.398234 0.917284i $$-0.630377\pi$$
−0.398234 + 0.917284i $$0.630377\pi$$
$$228$$ 0 0
$$229$$ −3.00000 −0.198246 −0.0991228 0.995075i $$-0.531604\pi$$
−0.0991228 + 0.995075i $$0.531604\pi$$
$$230$$ 0 0
$$231$$ 0 0
$$232$$ 0 0
$$233$$ −20.0000 −1.31024 −0.655122 0.755523i $$-0.727383\pi$$
−0.655122 + 0.755523i $$0.727383\pi$$
$$234$$ 0 0
$$235$$ 0 0
$$236$$ 0 0
$$237$$ 0 0
$$238$$ 0 0
$$239$$ 24.0000 1.55243 0.776215 0.630468i $$-0.217137\pi$$
0.776215 + 0.630468i $$0.217137\pi$$
$$240$$ 0 0
$$241$$ −7.00000 −0.450910 −0.225455 0.974254i $$-0.572387\pi$$
−0.225455 + 0.974254i $$0.572387\pi$$
$$242$$ 0 0
$$243$$ 0 0
$$244$$ 0 0
$$245$$ 0 0
$$246$$ 0 0
$$247$$ 3.00000 0.190885
$$248$$ 0 0
$$249$$ 0 0
$$250$$ 0 0
$$251$$ −20.0000 −1.26239 −0.631194 0.775625i $$-0.717435\pi$$
−0.631194 + 0.775625i $$0.717435\pi$$
$$252$$ 0 0
$$253$$ 12.0000 0.754434
$$254$$ 0 0
$$255$$ 0 0
$$256$$ 0 0
$$257$$ 12.0000 0.748539 0.374270 0.927320i $$-0.377893\pi$$
0.374270 + 0.927320i $$0.377893\pi$$
$$258$$ 0 0
$$259$$ −30.0000 −1.86411
$$260$$ 0 0
$$261$$ 0 0
$$262$$ 0 0
$$263$$ −12.0000 −0.739952 −0.369976 0.929041i $$-0.620634\pi$$
−0.369976 + 0.929041i $$0.620634\pi$$
$$264$$ 0 0
$$265$$ 0 0
$$266$$ 0 0
$$267$$ 0 0
$$268$$ 0 0
$$269$$ 30.0000 1.82913 0.914566 0.404436i $$-0.132532\pi$$
0.914566 + 0.404436i $$0.132532\pi$$
$$270$$ 0 0
$$271$$ −8.00000 −0.485965 −0.242983 0.970031i $$-0.578126\pi$$
−0.242983 + 0.970031i $$0.578126\pi$$
$$272$$ 0 0
$$273$$ 0 0
$$274$$ 0 0
$$275$$ 0 0
$$276$$ 0 0
$$277$$ 1.00000 0.0600842 0.0300421 0.999549i $$-0.490436\pi$$
0.0300421 + 0.999549i $$0.490436\pi$$
$$278$$ 0 0
$$279$$ 0 0
$$280$$ 0 0
$$281$$ −26.0000 −1.55103 −0.775515 0.631329i $$-0.782510\pi$$
−0.775515 + 0.631329i $$0.782510\pi$$
$$282$$ 0 0
$$283$$ −13.0000 −0.772770 −0.386385 0.922338i $$-0.626276\pi$$
−0.386385 + 0.922338i $$0.626276\pi$$
$$284$$ 0 0
$$285$$ 0 0
$$286$$ 0 0
$$287$$ −20.0000 −1.18056
$$288$$ 0 0
$$289$$ −13.0000 −0.764706
$$290$$ 0 0
$$291$$ 0 0
$$292$$ 0 0
$$293$$ 2.00000 0.116841 0.0584206 0.998292i $$-0.481394\pi$$
0.0584206 + 0.998292i $$0.481394\pi$$
$$294$$ 0 0
$$295$$ 0 0
$$296$$ 0 0
$$297$$ 0 0
$$298$$ 0 0
$$299$$ 6.00000 0.346989
$$300$$ 0 0
$$301$$ −55.0000 −3.17015
$$302$$ 0 0
$$303$$ 0 0
$$304$$ 0 0
$$305$$ 0 0
$$306$$ 0 0
$$307$$ −13.0000 −0.741949 −0.370975 0.928643i $$-0.620976\pi$$
−0.370975 + 0.928643i $$0.620976\pi$$
$$308$$ 0 0
$$309$$ 0 0
$$310$$ 0 0
$$311$$ −14.0000 −0.793867 −0.396934 0.917847i $$-0.629926\pi$$
−0.396934 + 0.917847i $$0.629926\pi$$
$$312$$ 0 0
$$313$$ −29.0000 −1.63918 −0.819588 0.572953i $$-0.805798\pi$$
−0.819588 + 0.572953i $$0.805798\pi$$
$$314$$ 0 0
$$315$$ 0 0
$$316$$ 0 0
$$317$$ 16.0000 0.898650 0.449325 0.893368i $$-0.351665\pi$$
0.449325 + 0.893368i $$0.351665\pi$$
$$318$$ 0 0
$$319$$ 36.0000 2.01561
$$320$$ 0 0
$$321$$ 0 0
$$322$$ 0 0
$$323$$ −2.00000 −0.111283
$$324$$ 0 0
$$325$$ 0 0
$$326$$ 0 0
$$327$$ 0 0
$$328$$ 0 0
$$329$$ −50.0000 −2.75659
$$330$$ 0 0
$$331$$ 20.0000 1.09930 0.549650 0.835395i $$-0.314761\pi$$
0.549650 + 0.835395i $$0.314761\pi$$
$$332$$ 0 0
$$333$$ 0 0
$$334$$ 0 0
$$335$$ 0 0
$$336$$ 0 0
$$337$$ −23.0000 −1.25289 −0.626445 0.779466i $$-0.715491\pi$$
−0.626445 + 0.779466i $$0.715491\pi$$
$$338$$ 0 0
$$339$$ 0 0
$$340$$ 0 0
$$341$$ 18.0000 0.974755
$$342$$ 0 0
$$343$$ 55.0000 2.96972
$$344$$ 0 0
$$345$$ 0 0
$$346$$ 0 0
$$347$$ −18.0000 −0.966291 −0.483145 0.875540i $$-0.660506\pi$$
−0.483145 + 0.875540i $$0.660506\pi$$
$$348$$ 0 0
$$349$$ 10.0000 0.535288 0.267644 0.963518i $$-0.413755\pi$$
0.267644 + 0.963518i $$0.413755\pi$$
$$350$$ 0 0
$$351$$ 0 0
$$352$$ 0 0
$$353$$ −18.0000 −0.958043 −0.479022 0.877803i $$-0.659008\pi$$
−0.479022 + 0.877803i $$0.659008\pi$$
$$354$$ 0 0
$$355$$ 0 0
$$356$$ 0 0
$$357$$ 0 0
$$358$$ 0 0
$$359$$ −4.00000 −0.211112 −0.105556 0.994413i $$-0.533662\pi$$
−0.105556 + 0.994413i $$0.533662\pi$$
$$360$$ 0 0
$$361$$ −18.0000 −0.947368
$$362$$ 0 0
$$363$$ 0 0
$$364$$ 0 0
$$365$$ 0 0
$$366$$ 0 0
$$367$$ −13.0000 −0.678594 −0.339297 0.940679i $$-0.610189\pi$$
−0.339297 + 0.940679i $$0.610189\pi$$
$$368$$ 0 0
$$369$$ 0 0
$$370$$ 0 0
$$371$$ 40.0000 2.07670
$$372$$ 0 0
$$373$$ −25.0000 −1.29445 −0.647225 0.762299i $$-0.724071\pi$$
−0.647225 + 0.762299i $$0.724071\pi$$
$$374$$ 0 0
$$375$$ 0 0
$$376$$ 0 0
$$377$$ 18.0000 0.927047
$$378$$ 0 0
$$379$$ 5.00000 0.256833 0.128416 0.991720i $$-0.459011\pi$$
0.128416 + 0.991720i $$0.459011\pi$$
$$380$$ 0 0
$$381$$ 0 0
$$382$$ 0 0
$$383$$ 20.0000 1.02195 0.510976 0.859595i $$-0.329284\pi$$
0.510976 + 0.859595i $$0.329284\pi$$
$$384$$ 0 0
$$385$$ 0 0
$$386$$ 0 0
$$387$$ 0 0
$$388$$ 0 0
$$389$$ 12.0000 0.608424 0.304212 0.952604i $$-0.401607\pi$$
0.304212 + 0.952604i $$0.401607\pi$$
$$390$$ 0 0
$$391$$ −4.00000 −0.202289
$$392$$ 0 0
$$393$$ 0 0
$$394$$ 0 0
$$395$$ 0 0
$$396$$ 0 0
$$397$$ 11.0000 0.552074 0.276037 0.961147i $$-0.410979\pi$$
0.276037 + 0.961147i $$0.410979\pi$$
$$398$$ 0 0
$$399$$ 0 0
$$400$$ 0 0
$$401$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$402$$ 0 0
$$403$$ 9.00000 0.448322
$$404$$ 0 0
$$405$$ 0 0
$$406$$ 0 0
$$407$$ 36.0000 1.78445
$$408$$ 0 0
$$409$$ −11.0000 −0.543915 −0.271957 0.962309i $$-0.587671\pi$$
−0.271957 + 0.962309i $$0.587671\pi$$
$$410$$ 0 0
$$411$$ 0 0
$$412$$ 0 0
$$413$$ −30.0000 −1.47620
$$414$$ 0 0
$$415$$ 0 0
$$416$$ 0 0
$$417$$ 0 0
$$418$$ 0 0
$$419$$ 32.0000 1.56330 0.781651 0.623716i $$-0.214378\pi$$
0.781651 + 0.623716i $$0.214378\pi$$
$$420$$ 0 0
$$421$$ 30.0000 1.46211 0.731055 0.682318i $$-0.239028\pi$$
0.731055 + 0.682318i $$0.239028\pi$$
$$422$$ 0 0
$$423$$ 0 0
$$424$$ 0 0
$$425$$ 0 0
$$426$$ 0 0
$$427$$ 15.0000 0.725901
$$428$$ 0 0
$$429$$ 0 0
$$430$$ 0 0
$$431$$ 22.0000 1.05970 0.529851 0.848091i $$-0.322248\pi$$
0.529851 + 0.848091i $$0.322248\pi$$
$$432$$ 0 0
$$433$$ 19.0000 0.913082 0.456541 0.889702i $$-0.349088\pi$$
0.456541 + 0.889702i $$0.349088\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ 0 0
$$437$$ 2.00000 0.0956730
$$438$$ 0 0
$$439$$ 5.00000 0.238637 0.119318 0.992856i $$-0.461929\pi$$
0.119318 + 0.992856i $$0.461929\pi$$
$$440$$ 0 0
$$441$$ 0 0
$$442$$ 0 0
$$443$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$444$$ 0 0
$$445$$ 0 0
$$446$$ 0 0
$$447$$ 0 0
$$448$$ 0 0
$$449$$ 4.00000 0.188772 0.0943858 0.995536i $$-0.469911\pi$$
0.0943858 + 0.995536i $$0.469911\pi$$
$$450$$ 0 0
$$451$$ 24.0000 1.13012
$$452$$ 0 0
$$453$$ 0 0
$$454$$ 0 0
$$455$$ 0 0
$$456$$ 0 0
$$457$$ 22.0000 1.02912 0.514558 0.857455i $$-0.327956\pi$$
0.514558 + 0.857455i $$0.327956\pi$$
$$458$$ 0 0
$$459$$ 0 0
$$460$$ 0 0
$$461$$ 16.0000 0.745194 0.372597 0.927993i $$-0.378467\pi$$
0.372597 + 0.927993i $$0.378467\pi$$
$$462$$ 0 0
$$463$$ 8.00000 0.371792 0.185896 0.982569i $$-0.440481\pi$$
0.185896 + 0.982569i $$0.440481\pi$$
$$464$$ 0 0
$$465$$ 0 0
$$466$$ 0 0
$$467$$ −14.0000 −0.647843 −0.323921 0.946084i $$-0.605001\pi$$
−0.323921 + 0.946084i $$0.605001\pi$$
$$468$$ 0 0
$$469$$ 5.00000 0.230879
$$470$$ 0 0
$$471$$ 0 0
$$472$$ 0 0
$$473$$ 66.0000 3.03468
$$474$$ 0 0
$$475$$ 0 0
$$476$$ 0 0
$$477$$ 0 0
$$478$$ 0 0
$$479$$ −6.00000 −0.274147 −0.137073 0.990561i $$-0.543770\pi$$
−0.137073 + 0.990561i $$0.543770\pi$$
$$480$$ 0 0
$$481$$ 18.0000 0.820729
$$482$$ 0 0
$$483$$ 0 0
$$484$$ 0 0
$$485$$ 0 0
$$486$$ 0 0
$$487$$ 3.00000 0.135943 0.0679715 0.997687i $$-0.478347\pi$$
0.0679715 + 0.997687i $$0.478347\pi$$
$$488$$ 0 0
$$489$$ 0 0
$$490$$ 0 0
$$491$$ 8.00000 0.361035 0.180517 0.983572i $$-0.442223\pi$$
0.180517 + 0.983572i $$0.442223\pi$$
$$492$$ 0 0
$$493$$ −12.0000 −0.540453
$$494$$ 0 0
$$495$$ 0 0
$$496$$ 0 0
$$497$$ −60.0000 −2.69137
$$498$$ 0 0
$$499$$ −17.0000 −0.761025 −0.380512 0.924776i $$-0.624252\pi$$
−0.380512 + 0.924776i $$0.624252\pi$$
$$500$$ 0 0
$$501$$ 0 0
$$502$$ 0 0
$$503$$ 36.0000 1.60516 0.802580 0.596544i $$-0.203460\pi$$
0.802580 + 0.596544i $$0.203460\pi$$
$$504$$ 0 0
$$505$$ 0 0
$$506$$ 0 0
$$507$$ 0 0
$$508$$ 0 0
$$509$$ −6.00000 −0.265945 −0.132973 0.991120i $$-0.542452\pi$$
−0.132973 + 0.991120i $$0.542452\pi$$
$$510$$ 0 0
$$511$$ 50.0000 2.21187
$$512$$ 0 0
$$513$$ 0 0
$$514$$ 0 0
$$515$$ 0 0
$$516$$ 0 0
$$517$$ 60.0000 2.63880
$$518$$ 0 0
$$519$$ 0 0
$$520$$ 0 0
$$521$$ 14.0000 0.613351 0.306676 0.951814i $$-0.400783\pi$$
0.306676 + 0.951814i $$0.400783\pi$$
$$522$$ 0 0
$$523$$ −21.0000 −0.918266 −0.459133 0.888368i $$-0.651840\pi$$
−0.459133 + 0.888368i $$0.651840\pi$$
$$524$$ 0 0
$$525$$ 0 0
$$526$$ 0 0
$$527$$ −6.00000 −0.261364
$$528$$ 0 0
$$529$$ −19.0000 −0.826087
$$530$$ 0 0
$$531$$ 0 0
$$532$$ 0 0
$$533$$ 12.0000 0.519778
$$534$$ 0 0
$$535$$ 0 0
$$536$$ 0 0
$$537$$ 0 0
$$538$$ 0 0
$$539$$ −108.000 −4.65189
$$540$$ 0 0
$$541$$ 17.0000 0.730887 0.365444 0.930834i $$-0.380917\pi$$
0.365444 + 0.930834i $$0.380917\pi$$
$$542$$ 0 0
$$543$$ 0 0
$$544$$ 0 0
$$545$$ 0 0
$$546$$ 0 0
$$547$$ −16.0000 −0.684111 −0.342055 0.939680i $$-0.611123\pi$$
−0.342055 + 0.939680i $$0.611123\pi$$
$$548$$ 0 0
$$549$$ 0 0
$$550$$ 0 0
$$551$$ 6.00000 0.255609
$$552$$ 0 0
$$553$$ 40.0000 1.70097
$$554$$ 0 0
$$555$$ 0 0
$$556$$ 0 0
$$557$$ 14.0000 0.593199 0.296600 0.955002i $$-0.404147\pi$$
0.296600 + 0.955002i $$0.404147\pi$$
$$558$$ 0 0
$$559$$ 33.0000 1.39575
$$560$$ 0 0
$$561$$ 0 0
$$562$$ 0 0
$$563$$ −18.0000 −0.758610 −0.379305 0.925272i $$-0.623837\pi$$
−0.379305 + 0.925272i $$0.623837\pi$$
$$564$$ 0 0
$$565$$ 0 0
$$566$$ 0 0
$$567$$ 0 0
$$568$$ 0 0
$$569$$ −10.0000 −0.419222 −0.209611 0.977785i $$-0.567220\pi$$
−0.209611 + 0.977785i $$0.567220\pi$$
$$570$$ 0 0
$$571$$ −1.00000 −0.0418487 −0.0209243 0.999781i $$-0.506661\pi$$
−0.0209243 + 0.999781i $$0.506661\pi$$
$$572$$ 0 0
$$573$$ 0 0
$$574$$ 0 0
$$575$$ 0 0
$$576$$ 0 0
$$577$$ 43.0000 1.79011 0.895057 0.445952i $$-0.147135\pi$$
0.895057 + 0.445952i $$0.147135\pi$$
$$578$$ 0 0
$$579$$ 0 0
$$580$$ 0 0
$$581$$ −30.0000 −1.24461
$$582$$ 0 0
$$583$$ −48.0000 −1.98796
$$584$$ 0 0
$$585$$ 0 0
$$586$$ 0 0
$$587$$ 24.0000 0.990586 0.495293 0.868726i $$-0.335061\pi$$
0.495293 + 0.868726i $$0.335061\pi$$
$$588$$ 0 0
$$589$$ 3.00000 0.123613
$$590$$ 0 0
$$591$$ 0 0
$$592$$ 0 0
$$593$$ −4.00000 −0.164260 −0.0821302 0.996622i $$-0.526172\pi$$
−0.0821302 + 0.996622i $$0.526172\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ 0 0
$$597$$ 0 0
$$598$$ 0 0
$$599$$ 44.0000 1.79779 0.898896 0.438163i $$-0.144371\pi$$
0.898896 + 0.438163i $$0.144371\pi$$
$$600$$ 0 0
$$601$$ −13.0000 −0.530281 −0.265141 0.964210i $$-0.585418\pi$$
−0.265141 + 0.964210i $$0.585418\pi$$
$$602$$ 0 0
$$603$$ 0 0
$$604$$ 0 0
$$605$$ 0 0
$$606$$ 0 0
$$607$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$608$$ 0 0
$$609$$ 0 0
$$610$$ 0 0
$$611$$ 30.0000 1.21367
$$612$$ 0 0
$$613$$ 2.00000 0.0807792 0.0403896 0.999184i $$-0.487140\pi$$
0.0403896 + 0.999184i $$0.487140\pi$$
$$614$$ 0 0
$$615$$ 0 0
$$616$$ 0 0
$$617$$ 32.0000 1.28827 0.644136 0.764911i $$-0.277217\pi$$
0.644136 + 0.764911i $$0.277217\pi$$
$$618$$ 0 0
$$619$$ 19.0000 0.763674 0.381837 0.924230i $$-0.375291\pi$$
0.381837 + 0.924230i $$0.375291\pi$$
$$620$$ 0 0
$$621$$ 0 0
$$622$$ 0 0
$$623$$ 80.0000 3.20513
$$624$$ 0 0
$$625$$ 0 0
$$626$$ 0 0
$$627$$ 0 0
$$628$$ 0 0
$$629$$ −12.0000 −0.478471
$$630$$ 0 0
$$631$$ −31.0000 −1.23409 −0.617045 0.786928i $$-0.711670\pi$$
−0.617045 + 0.786928i $$0.711670\pi$$
$$632$$ 0 0
$$633$$ 0 0
$$634$$ 0 0
$$635$$ 0 0
$$636$$ 0 0
$$637$$ −54.0000 −2.13956
$$638$$ 0 0
$$639$$ 0 0
$$640$$ 0 0
$$641$$ −36.0000 −1.42191 −0.710957 0.703235i $$-0.751738\pi$$
−0.710957 + 0.703235i $$0.751738\pi$$
$$642$$ 0 0
$$643$$ 12.0000 0.473234 0.236617 0.971603i $$-0.423961\pi$$
0.236617 + 0.971603i $$0.423961\pi$$
$$644$$ 0 0
$$645$$ 0 0
$$646$$ 0 0
$$647$$ 12.0000 0.471769 0.235884 0.971781i $$-0.424201\pi$$
0.235884 + 0.971781i $$0.424201\pi$$
$$648$$ 0 0
$$649$$ 36.0000 1.41312
$$650$$ 0 0
$$651$$ 0 0
$$652$$ 0 0
$$653$$ 6.00000 0.234798 0.117399 0.993085i $$-0.462544\pi$$
0.117399 + 0.993085i $$0.462544\pi$$
$$654$$ 0 0
$$655$$ 0 0
$$656$$ 0 0
$$657$$ 0 0
$$658$$ 0 0
$$659$$ −28.0000 −1.09073 −0.545363 0.838200i $$-0.683608\pi$$
−0.545363 + 0.838200i $$0.683608\pi$$
$$660$$ 0 0
$$661$$ 10.0000 0.388955 0.194477 0.980907i $$-0.437699\pi$$
0.194477 + 0.980907i $$0.437699\pi$$
$$662$$ 0 0
$$663$$ 0 0
$$664$$ 0 0
$$665$$ 0 0
$$666$$ 0 0
$$667$$ 12.0000 0.464642
$$668$$ 0 0
$$669$$ 0 0
$$670$$ 0 0
$$671$$ −18.0000 −0.694882
$$672$$ 0 0
$$673$$ −34.0000 −1.31060 −0.655302 0.755367i $$-0.727459\pi$$
−0.655302 + 0.755367i $$0.727459\pi$$
$$674$$ 0 0
$$675$$ 0 0
$$676$$ 0 0
$$677$$ 18.0000 0.691796 0.345898 0.938272i $$-0.387574\pi$$
0.345898 + 0.938272i $$0.387574\pi$$
$$678$$ 0 0
$$679$$ −35.0000 −1.34318
$$680$$ 0 0
$$681$$ 0 0
$$682$$ 0 0
$$683$$ −24.0000 −0.918334 −0.459167 0.888350i $$-0.651852\pi$$
−0.459167 + 0.888350i $$0.651852\pi$$
$$684$$ 0 0
$$685$$ 0 0
$$686$$ 0 0
$$687$$ 0 0
$$688$$ 0 0
$$689$$ −24.0000 −0.914327
$$690$$ 0 0
$$691$$ −16.0000 −0.608669 −0.304334 0.952565i $$-0.598434\pi$$
−0.304334 + 0.952565i $$0.598434\pi$$
$$692$$ 0 0
$$693$$ 0 0
$$694$$ 0 0
$$695$$ 0 0
$$696$$ 0 0
$$697$$ −8.00000 −0.303022
$$698$$ 0 0
$$699$$ 0 0
$$700$$ 0 0
$$701$$ 14.0000 0.528773 0.264386 0.964417i $$-0.414831\pi$$
0.264386 + 0.964417i $$0.414831\pi$$
$$702$$ 0 0
$$703$$ 6.00000 0.226294
$$704$$ 0 0
$$705$$ 0 0
$$706$$ 0 0
$$707$$ 40.0000 1.50435
$$708$$ 0 0
$$709$$ −35.0000 −1.31445 −0.657226 0.753693i $$-0.728270\pi$$
−0.657226 + 0.753693i $$0.728270\pi$$
$$710$$ 0 0
$$711$$ 0 0
$$712$$ 0 0
$$713$$ 6.00000 0.224702
$$714$$ 0 0
$$715$$ 0 0
$$716$$ 0 0
$$717$$ 0 0
$$718$$ 0 0
$$719$$ −42.0000 −1.56634 −0.783168 0.621810i $$-0.786397\pi$$
−0.783168 + 0.621810i $$0.786397\pi$$
$$720$$ 0 0
$$721$$ −20.0000 −0.744839
$$722$$ 0 0
$$723$$ 0 0
$$724$$ 0 0
$$725$$ 0 0
$$726$$ 0 0
$$727$$ 13.0000 0.482143 0.241072 0.970507i $$-0.422501\pi$$
0.241072 + 0.970507i $$0.422501\pi$$
$$728$$ 0 0
$$729$$ 0 0
$$730$$ 0 0
$$731$$ −22.0000 −0.813699
$$732$$ 0 0
$$733$$ −34.0000 −1.25582 −0.627909 0.778287i $$-0.716089\pi$$
−0.627909 + 0.778287i $$0.716089\pi$$
$$734$$ 0 0
$$735$$ 0 0
$$736$$ 0 0
$$737$$ −6.00000 −0.221013
$$738$$ 0 0
$$739$$ 44.0000 1.61857 0.809283 0.587419i $$-0.199856\pi$$
0.809283 + 0.587419i $$0.199856\pi$$
$$740$$ 0 0
$$741$$ 0 0
$$742$$ 0 0
$$743$$ −12.0000 −0.440237 −0.220119 0.975473i $$-0.570644\pi$$
−0.220119 + 0.975473i $$0.570644\pi$$
$$744$$ 0 0
$$745$$ 0 0
$$746$$ 0 0
$$747$$ 0 0
$$748$$ 0 0
$$749$$ −40.0000 −1.46157
$$750$$ 0 0
$$751$$ −24.0000 −0.875772 −0.437886 0.899030i $$-0.644273\pi$$
−0.437886 + 0.899030i $$0.644273\pi$$
$$752$$ 0 0
$$753$$ 0 0
$$754$$ 0 0
$$755$$ 0 0
$$756$$ 0 0
$$757$$ −3.00000 −0.109037 −0.0545184 0.998513i $$-0.517362\pi$$
−0.0545184 + 0.998513i $$0.517362\pi$$
$$758$$ 0 0
$$759$$ 0 0
$$760$$ 0 0
$$761$$ 52.0000 1.88500 0.942499 0.334208i $$-0.108469\pi$$
0.942499 + 0.334208i $$0.108469\pi$$
$$762$$ 0 0
$$763$$ −35.0000 −1.26709
$$764$$ 0 0
$$765$$ 0 0
$$766$$ 0 0
$$767$$ 18.0000 0.649942
$$768$$ 0 0
$$769$$ 27.0000 0.973645 0.486822 0.873501i $$-0.338156\pi$$
0.486822 + 0.873501i $$0.338156\pi$$
$$770$$ 0 0
$$771$$ 0 0
$$772$$ 0 0
$$773$$ −28.0000 −1.00709 −0.503545 0.863969i $$-0.667971\pi$$
−0.503545 + 0.863969i $$0.667971\pi$$
$$774$$ 0 0
$$775$$ 0 0
$$776$$ 0 0
$$777$$ 0 0
$$778$$ 0 0
$$779$$ 4.00000 0.143315
$$780$$ 0 0
$$781$$ 72.0000 2.57636
$$782$$ 0 0
$$783$$ 0 0
$$784$$ 0 0
$$785$$ 0 0
$$786$$ 0 0
$$787$$ 3.00000 0.106938 0.0534692 0.998569i $$-0.482972\pi$$
0.0534692 + 0.998569i $$0.482972\pi$$
$$788$$ 0 0
$$789$$ 0 0
$$790$$ 0 0
$$791$$ −60.0000 −2.13335
$$792$$ 0 0
$$793$$ −9.00000 −0.319599
$$794$$ 0 0
$$795$$ 0 0
$$796$$ 0 0
$$797$$ −28.0000 −0.991811 −0.495905 0.868377i $$-0.665164\pi$$
−0.495905 + 0.868377i $$0.665164\pi$$
$$798$$ 0 0
$$799$$ −20.0000 −0.707549
$$800$$ 0 0
$$801$$ 0 0
$$802$$ 0 0
$$803$$ −60.0000 −2.11735
$$804$$ 0 0
$$805$$ 0 0
$$806$$ 0 0
$$807$$ 0 0
$$808$$ 0 0
$$809$$ 24.0000 0.843795 0.421898 0.906644i $$-0.361364\pi$$
0.421898 + 0.906644i $$0.361364\pi$$
$$810$$ 0 0
$$811$$ −9.00000 −0.316033 −0.158016 0.987436i $$-0.550510\pi$$
−0.158016 + 0.987436i $$0.550510\pi$$
$$812$$ 0 0
$$813$$ 0 0
$$814$$ 0 0
$$815$$ 0 0
$$816$$ 0 0
$$817$$ 11.0000 0.384841
$$818$$ 0 0
$$819$$ 0 0
$$820$$ 0 0
$$821$$ 10.0000 0.349002 0.174501 0.984657i $$-0.444169\pi$$
0.174501 + 0.984657i $$0.444169\pi$$
$$822$$ 0 0
$$823$$ 49.0000 1.70803 0.854016 0.520246i $$-0.174160\pi$$
0.854016 + 0.520246i $$0.174160\pi$$
$$824$$ 0 0
$$825$$ 0 0
$$826$$ 0 0
$$827$$ −32.0000 −1.11275 −0.556375 0.830932i $$-0.687808\pi$$
−0.556375 + 0.830932i $$0.687808\pi$$
$$828$$ 0 0
$$829$$ 50.0000 1.73657 0.868286 0.496064i $$-0.165222\pi$$
0.868286 + 0.496064i $$0.165222\pi$$
$$830$$ 0 0
$$831$$ 0 0
$$832$$ 0 0
$$833$$ 36.0000 1.24733
$$834$$ 0 0
$$835$$ 0 0
$$836$$ 0 0
$$837$$ 0 0
$$838$$ 0 0
$$839$$ 26.0000 0.897620 0.448810 0.893627i $$-0.351848\pi$$
0.448810 + 0.893627i $$0.351848\pi$$
$$840$$ 0 0
$$841$$ 7.00000 0.241379
$$842$$ 0 0
$$843$$ 0 0
$$844$$ 0 0
$$845$$ 0 0
$$846$$ 0 0
$$847$$ 125.000 4.29505
$$848$$ 0 0
$$849$$ 0 0
$$850$$ 0 0
$$851$$ 12.0000 0.411355
$$852$$ 0 0
$$853$$ 55.0000 1.88316 0.941582 0.336784i $$-0.109339\pi$$
0.941582 + 0.336784i $$0.109339\pi$$
$$854$$ 0 0
$$855$$ 0 0
$$856$$ 0 0
$$857$$ 52.0000 1.77629 0.888143 0.459567i $$-0.151995\pi$$
0.888143 + 0.459567i $$0.151995\pi$$
$$858$$ 0 0
$$859$$ −48.0000 −1.63774 −0.818869 0.573980i $$-0.805399\pi$$
−0.818869 + 0.573980i $$0.805399\pi$$
$$860$$ 0 0
$$861$$ 0 0
$$862$$ 0 0
$$863$$ −8.00000 −0.272323 −0.136162 0.990687i $$-0.543477\pi$$
−0.136162 + 0.990687i $$0.543477\pi$$
$$864$$ 0 0
$$865$$ 0 0
$$866$$ 0 0
$$867$$ 0 0
$$868$$ 0 0
$$869$$ −48.0000 −1.62829
$$870$$ 0 0
$$871$$ −3.00000 −0.101651
$$872$$ 0 0
$$873$$ 0 0
$$874$$ 0 0
$$875$$ 0 0
$$876$$ 0 0
$$877$$ −17.0000 −0.574049 −0.287025 0.957923i $$-0.592666\pi$$
−0.287025 + 0.957923i $$0.592666\pi$$
$$878$$ 0 0
$$879$$ 0 0
$$880$$ 0 0
$$881$$ 40.0000 1.34763 0.673817 0.738898i $$-0.264654\pi$$
0.673817 + 0.738898i $$0.264654\pi$$
$$882$$ 0 0
$$883$$ −19.0000 −0.639401 −0.319700 0.947519i $$-0.603582\pi$$
−0.319700 + 0.947519i $$0.603582\pi$$
$$884$$ 0 0
$$885$$ 0 0
$$886$$ 0 0
$$887$$ 42.0000 1.41022 0.705111 0.709097i $$-0.250897\pi$$
0.705111 + 0.709097i $$0.250897\pi$$
$$888$$ 0 0
$$889$$ −40.0000 −1.34156
$$890$$ 0 0
$$891$$ 0 0
$$892$$ 0 0
$$893$$ 10.0000 0.334637
$$894$$ 0 0
$$895$$ 0 0
$$896$$ 0 0
$$897$$ 0 0
$$898$$ 0 0
$$899$$ 18.0000 0.600334
$$900$$ 0 0
$$901$$ 16.0000 0.533037
$$902$$ 0 0
$$903$$ 0 0
$$904$$ 0 0
$$905$$ 0 0
$$906$$ 0 0
$$907$$ 44.0000 1.46100 0.730498 0.682915i $$-0.239288\pi$$
0.730498 + 0.682915i $$0.239288\pi$$
$$908$$ 0 0
$$909$$ 0 0
$$910$$ 0 0
$$911$$ −14.0000 −0.463841 −0.231920 0.972735i $$-0.574501\pi$$
−0.231920 + 0.972735i $$0.574501\pi$$
$$912$$ 0 0
$$913$$ 36.0000 1.19143
$$914$$ 0 0
$$915$$ 0 0
$$916$$ 0 0
$$917$$ 80.0000 2.64183
$$918$$ 0 0
$$919$$ −1.00000 −0.0329870 −0.0164935 0.999864i $$-0.505250\pi$$
−0.0164935 + 0.999864i $$0.505250\pi$$
$$920$$ 0 0
$$921$$ 0 0
$$922$$ 0 0
$$923$$ 36.0000 1.18495
$$924$$ 0 0
$$925$$ 0 0
$$926$$ 0 0
$$927$$ 0 0
$$928$$ 0 0
$$929$$ 30.0000 0.984268 0.492134 0.870519i $$-0.336217\pi$$
0.492134 + 0.870519i $$0.336217\pi$$
$$930$$ 0 0
$$931$$ −18.0000 −0.589926
$$932$$ 0 0
$$933$$ 0 0
$$934$$ 0 0
$$935$$ 0 0
$$936$$ 0 0
$$937$$ 23.0000 0.751377 0.375689 0.926746i $$-0.377406\pi$$
0.375689 + 0.926746i $$0.377406\pi$$
$$938$$ 0 0
$$939$$ 0 0
$$940$$ 0 0
$$941$$ −46.0000 −1.49956 −0.749779 0.661689i $$-0.769840\pi$$
−0.749779 + 0.661689i $$0.769840\pi$$
$$942$$ 0 0
$$943$$ 8.00000 0.260516
$$944$$ 0 0
$$945$$ 0 0
$$946$$ 0 0
$$947$$ −2.00000 −0.0649913 −0.0324956 0.999472i $$-0.510346\pi$$
−0.0324956 + 0.999472i $$0.510346\pi$$
$$948$$ 0 0
$$949$$ −30.0000 −0.973841
$$950$$ 0 0
$$951$$ 0 0
$$952$$ 0 0
$$953$$ −24.0000 −0.777436 −0.388718 0.921357i $$-0.627082\pi$$
−0.388718 + 0.921357i $$0.627082\pi$$
$$954$$ 0 0
$$955$$ 0 0
$$956$$ 0 0
$$957$$ 0 0
$$958$$ 0 0
$$959$$ −30.0000 −0.968751
$$960$$ 0 0
$$961$$ −22.0000 −0.709677
$$962$$ 0 0
$$963$$ 0 0
$$964$$ 0 0
$$965$$ 0 0
$$966$$ 0 0
$$967$$ −56.0000 −1.80084 −0.900419 0.435023i $$-0.856740\pi$$
−0.900419 + 0.435023i $$0.856740\pi$$
$$968$$ 0 0
$$969$$ 0 0
$$970$$ 0 0
$$971$$ 46.0000 1.47621 0.738105 0.674686i $$-0.235721\pi$$
0.738105 + 0.674686i $$0.235721\pi$$
$$972$$ 0 0
$$973$$ 60.0000 1.92351
$$974$$ 0 0
$$975$$ 0 0
$$976$$ 0 0
$$977$$ −10.0000 −0.319928 −0.159964 0.987123i $$-0.551138\pi$$
−0.159964 + 0.987123i $$0.551138\pi$$
$$978$$ 0 0
$$979$$ −96.0000 −3.06817
$$980$$ 0 0
$$981$$ 0 0
$$982$$ 0 0
$$983$$ −36.0000 −1.14822 −0.574111 0.818778i $$-0.694652\pi$$
−0.574111 + 0.818778i $$0.694652\pi$$
$$984$$ 0 0
$$985$$ 0 0
$$986$$ 0 0
$$987$$ 0 0
$$988$$ 0 0
$$989$$ 22.0000 0.699559
$$990$$ 0 0
$$991$$ 25.0000 0.794151 0.397076 0.917786i $$-0.370025\pi$$
0.397076 + 0.917786i $$0.370025\pi$$
$$992$$ 0 0
$$993$$ 0 0
$$994$$ 0 0
$$995$$ 0 0
$$996$$ 0 0
$$997$$ −54.0000 −1.71020 −0.855099 0.518465i $$-0.826503\pi$$
−0.855099 + 0.518465i $$0.826503\pi$$
$$998$$ 0 0
$$999$$ 0 0
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

## Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3600.2.a.bq.1.1 1
3.2 odd 2 1200.2.a.i.1.1 1
4.3 odd 2 1800.2.a.a.1.1 1
5.2 odd 4 3600.2.f.b.2449.2 2
5.3 odd 4 3600.2.f.b.2449.1 2
5.4 even 2 3600.2.a.a.1.1 1
12.11 even 2 600.2.a.f.1.1 yes 1
15.2 even 4 1200.2.f.i.49.2 2
15.8 even 4 1200.2.f.i.49.1 2
15.14 odd 2 1200.2.a.j.1.1 1
20.3 even 4 1800.2.f.k.649.2 2
20.7 even 4 1800.2.f.k.649.1 2
20.19 odd 2 1800.2.a.x.1.1 1
24.5 odd 2 4800.2.a.cs.1.1 1
24.11 even 2 4800.2.a.b.1.1 1
60.23 odd 4 600.2.f.a.49.2 2
60.47 odd 4 600.2.f.a.49.1 2
60.59 even 2 600.2.a.e.1.1 1
120.29 odd 2 4800.2.a.a.1.1 1
120.53 even 4 4800.2.f.a.3649.2 2
120.59 even 2 4800.2.a.ct.1.1 1
120.77 even 4 4800.2.f.a.3649.1 2
120.83 odd 4 4800.2.f.bj.3649.1 2
120.107 odd 4 4800.2.f.bj.3649.2 2

By twisted newform
Twist Min Dim Char Parity Ord Type
600.2.a.e.1.1 1 60.59 even 2
600.2.a.f.1.1 yes 1 12.11 even 2
600.2.f.a.49.1 2 60.47 odd 4
600.2.f.a.49.2 2 60.23 odd 4
1200.2.a.i.1.1 1 3.2 odd 2
1200.2.a.j.1.1 1 15.14 odd 2
1200.2.f.i.49.1 2 15.8 even 4
1200.2.f.i.49.2 2 15.2 even 4
1800.2.a.a.1.1 1 4.3 odd 2
1800.2.a.x.1.1 1 20.19 odd 2
1800.2.f.k.649.1 2 20.7 even 4
1800.2.f.k.649.2 2 20.3 even 4
3600.2.a.a.1.1 1 5.4 even 2
3600.2.a.bq.1.1 1 1.1 even 1 trivial
3600.2.f.b.2449.1 2 5.3 odd 4
3600.2.f.b.2449.2 2 5.2 odd 4
4800.2.a.a.1.1 1 120.29 odd 2
4800.2.a.b.1.1 1 24.11 even 2
4800.2.a.cs.1.1 1 24.5 odd 2
4800.2.a.ct.1.1 1 120.59 even 2
4800.2.f.a.3649.1 2 120.77 even 4
4800.2.f.a.3649.2 2 120.53 even 4
4800.2.f.bj.3649.1 2 120.83 odd 4
4800.2.f.bj.3649.2 2 120.107 odd 4