Properties

Label 3600.1.ct
Level $3600$
Weight $1$
Character orbit 3600.ct
Rep. character $\chi_{3600}(559,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $4$
Newform subspaces $1$
Sturm bound $720$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3600 = 2^{4} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3600.ct (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 100 \)
Character field: \(\Q(\zeta_{10})\)
Newform subspaces: \( 1 \)
Sturm bound: \(720\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(3600, [\chi])\).

Total New Old
Modular forms 136 4 132
Cusp forms 40 4 36
Eisenstein series 96 0 96

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 4 0 0 0

Trace form

\( 4 q - q^{5} - q^{25} + 2 q^{29} - 5 q^{37} - 2 q^{41} - 4 q^{49} + 5 q^{53} + 2 q^{61} + 5 q^{65} + 5 q^{85} - 3 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(3600, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
3600.1.ct.a 3600.ct 100.h $4$ $1.797$ \(\Q(\zeta_{10})\) $D_{10}$ \(\Q(\sqrt{-1}) \) None 400.1.x.a \(0\) \(0\) \(-1\) \(0\) \(q+\zeta_{10}^{4}q^{5}+(-\zeta_{10}+\zeta_{10}^{3})q^{13}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(3600, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(3600, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(400, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(900, [\chi])\)\(^{\oplus 3}\)