Properties

Label 3600.1.c
Level $3600$
Weight $1$
Character orbit 3600.c
Rep. character $\chi_{3600}(449,\cdot)$
Character field $\Q$
Dimension $4$
Newform subspaces $1$
Sturm bound $720$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3600 = 2^{4} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3600.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 15 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(720\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(3600, [\chi])\).

Total New Old
Modular forms 100 4 96
Cusp forms 28 4 24
Eisenstein series 72 0 72

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 0 0 4 0

Trace form

\( 4 q + 4 q^{19} - 4 q^{31} + 4 q^{61} + 4 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(3600, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
3600.1.c.a 3600.c 15.d $4$ $1.797$ \(\Q(\zeta_{8})\) $S_{4}$ None None 1800.1.l.a \(0\) \(0\) \(0\) \(0\) \(q-\zeta_{8}^{2}q^{7}+(\zeta_{8}+\zeta_{8}^{3})q^{11}+\zeta_{8}^{2}q^{13}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(3600, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(3600, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(300, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(1200, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(1800, [\chi])\)\(^{\oplus 2}\)