Defining parameters
| Level: | \( N \) | \(=\) | \( 3600 = 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
| Weight: | \( k \) | \(=\) | \( 1 \) |
| Character orbit: | \([\chi]\) | \(=\) | 3600.c (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 15 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 1 \) | ||
| Sturm bound: | \(720\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(3600, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 100 | 4 | 96 |
| Cusp forms | 28 | 4 | 24 |
| Eisenstein series | 72 | 0 | 72 |
The following table gives the dimensions of subspaces with specified projective image type.
| \(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
|---|---|---|---|---|
| Dimension | 0 | 0 | 4 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(3600, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
| 3600.1.c.a | $4$ | $1.797$ | \(\Q(\zeta_{8})\) | $S_{4}$ | None | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\zeta_{8}^{2}q^{7}+(\zeta_{8}+\zeta_{8}^{3})q^{11}+\zeta_{8}^{2}q^{13}+\cdots\) |
Decomposition of \(S_{1}^{\mathrm{old}}(3600, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(3600, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(300, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(1200, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(1800, [\chi])\)\(^{\oplus 2}\)