Properties

Label 3600.1
Level 3600
Weight 1
Dimension 82
Nonzero newspaces 14
Newform subspaces 23
Sturm bound 691200
Trace bound 49

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 3600 = 2^{4} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) = \( 1 \)
Nonzero newspaces: \( 14 \)
Newform subspaces: \( 23 \)
Sturm bound: \(691200\)
Trace bound: \(49\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(3600))\).

Total New Old
Modular forms 7192 912 6280
Cusp forms 920 82 838
Eisenstein series 6272 830 5442

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 74 0 8 0

Trace form

\( 82 q - q^{5} - 2 q^{9} + O(q^{10}) \) \( 82 q - q^{5} - 2 q^{9} - 2 q^{13} + 4 q^{16} - 4 q^{19} + 8 q^{21} + q^{25} + 2 q^{29} - 8 q^{31} + 4 q^{34} + 7 q^{37} + 10 q^{41} + 12 q^{46} + 4 q^{49} + 5 q^{53} + 8 q^{61} + 5 q^{65} + 6 q^{69} + 14 q^{73} + 4 q^{76} + 2 q^{81} + 3 q^{85} + 3 q^{89} + 20 q^{91} - 4 q^{94} + 14 q^{97} + O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(\Gamma_1(3600))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
3600.1.c \(\chi_{3600}(449, \cdot)\) 3600.1.c.a 4 1
3600.1.e \(\chi_{3600}(3151, \cdot)\) 3600.1.e.a 1 1
3600.1.e.b 1
3600.1.e.c 2
3600.1.e.d 2
3600.1.g \(\chi_{3600}(1351, \cdot)\) None 0 1
3600.1.i \(\chi_{3600}(2249, \cdot)\) None 0 1
3600.1.j \(\chi_{3600}(1999, \cdot)\) 3600.1.j.a 2 1
3600.1.j.b 4
3600.1.l \(\chi_{3600}(1601, \cdot)\) 3600.1.l.a 2 1
3600.1.l.b 2
3600.1.n \(\chi_{3600}(3401, \cdot)\) None 0 1
3600.1.p \(\chi_{3600}(199, \cdot)\) None 0 1
3600.1.r \(\chi_{3600}(1099, \cdot)\) None 0 2
3600.1.s \(\chi_{3600}(701, \cdot)\) None 0 2
3600.1.v \(\chi_{3600}(1943, \cdot)\) None 0 2
3600.1.y \(\chi_{3600}(793, \cdot)\) None 0 2
3600.1.ba \(\chi_{3600}(107, \cdot)\) None 0 2
3600.1.bb \(\chi_{3600}(757, \cdot)\) 3600.1.bb.a 2 2
3600.1.bb.b 2
3600.1.be \(\chi_{3600}(1907, \cdot)\) None 0 2
3600.1.bf \(\chi_{3600}(2557, \cdot)\) 3600.1.bf.a 2 2
3600.1.bf.b 2
3600.1.bh \(\chi_{3600}(2593, \cdot)\) 3600.1.bh.a 2 2
3600.1.bh.b 4
3600.1.bk \(\chi_{3600}(143, \cdot)\) 3600.1.bk.a 4 2
3600.1.bn \(\chi_{3600}(1349, \cdot)\) None 0 2
3600.1.bo \(\chi_{3600}(451, \cdot)\) 3600.1.bo.a 4 2
3600.1.bq \(\chi_{3600}(1399, \cdot)\) None 0 2
3600.1.br \(\chi_{3600}(1001, \cdot)\) None 0 2
3600.1.bt \(\chi_{3600}(401, \cdot)\) None 0 2
3600.1.bv \(\chi_{3600}(799, \cdot)\) None 0 2
3600.1.by \(\chi_{3600}(1049, \cdot)\) None 0 2
3600.1.ca \(\chi_{3600}(151, \cdot)\) None 0 2
3600.1.cc \(\chi_{3600}(751, \cdot)\) 3600.1.cc.a 2 2
3600.1.cc.b 2
3600.1.ce \(\chi_{3600}(1649, \cdot)\) None 0 2
3600.1.cf \(\chi_{3600}(89, \cdot)\) None 0 4
3600.1.ch \(\chi_{3600}(631, \cdot)\) None 0 4
3600.1.cj \(\chi_{3600}(271, \cdot)\) 3600.1.cj.a 8 4
3600.1.cl \(\chi_{3600}(1169, \cdot)\) None 0 4
3600.1.cn \(\chi_{3600}(919, \cdot)\) None 0 4
3600.1.cp \(\chi_{3600}(521, \cdot)\) None 0 4
3600.1.cr \(\chi_{3600}(161, \cdot)\) None 0 4
3600.1.ct \(\chi_{3600}(559, \cdot)\) 3600.1.ct.a 4 4
3600.1.cw \(\chi_{3600}(1051, \cdot)\) None 0 4
3600.1.cx \(\chi_{3600}(149, \cdot)\) None 0 4
3600.1.cz \(\chi_{3600}(193, \cdot)\) None 0 4
3600.1.da \(\chi_{3600}(1343, \cdot)\) 3600.1.da.a 8 4
3600.1.dd \(\chi_{3600}(157, \cdot)\) None 0 4
3600.1.de \(\chi_{3600}(443, \cdot)\) None 0 4
3600.1.dh \(\chi_{3600}(493, \cdot)\) None 0 4
3600.1.di \(\chi_{3600}(1307, \cdot)\) None 0 4
3600.1.dl \(\chi_{3600}(407, \cdot)\) None 0 4
3600.1.dm \(\chi_{3600}(457, \cdot)\) None 0 4
3600.1.do \(\chi_{3600}(101, \cdot)\) None 0 4
3600.1.dp \(\chi_{3600}(499, \cdot)\) None 0 4
3600.1.dv \(\chi_{3600}(341, \cdot)\) None 0 8
3600.1.dw \(\chi_{3600}(19, \cdot)\) None 0 8
3600.1.dx \(\chi_{3600}(287, \cdot)\) 3600.1.dx.a 16 8
3600.1.ea \(\chi_{3600}(433, \cdot)\) None 0 8
3600.1.ec \(\chi_{3600}(397, \cdot)\) None 0 8
3600.1.ed \(\chi_{3600}(467, \cdot)\) None 0 8
3600.1.eg \(\chi_{3600}(37, \cdot)\) None 0 8
3600.1.eh \(\chi_{3600}(323, \cdot)\) None 0 8
3600.1.ej \(\chi_{3600}(73, \cdot)\) None 0 8
3600.1.em \(\chi_{3600}(503, \cdot)\) None 0 8
3600.1.en \(\chi_{3600}(91, \cdot)\) None 0 8
3600.1.eo \(\chi_{3600}(269, \cdot)\) None 0 8
3600.1.es \(\chi_{3600}(79, \cdot)\) None 0 8
3600.1.eu \(\chi_{3600}(641, \cdot)\) None 0 8
3600.1.ew \(\chi_{3600}(41, \cdot)\) None 0 8
3600.1.ex \(\chi_{3600}(439, \cdot)\) None 0 8
3600.1.ey \(\chi_{3600}(209, \cdot)\) None 0 8
3600.1.fa \(\chi_{3600}(31, \cdot)\) None 0 8
3600.1.fc \(\chi_{3600}(391, \cdot)\) None 0 8
3600.1.fe \(\chi_{3600}(329, \cdot)\) None 0 8
3600.1.fg \(\chi_{3600}(29, \cdot)\) None 0 16
3600.1.fh \(\chi_{3600}(211, \cdot)\) None 0 16
3600.1.fl \(\chi_{3600}(313, \cdot)\) None 0 16
3600.1.fm \(\chi_{3600}(23, \cdot)\) None 0 16
3600.1.fp \(\chi_{3600}(83, \cdot)\) None 0 16
3600.1.fq \(\chi_{3600}(13, \cdot)\) None 0 16
3600.1.ft \(\chi_{3600}(203, \cdot)\) None 0 16
3600.1.fu \(\chi_{3600}(133, \cdot)\) None 0 16
3600.1.fx \(\chi_{3600}(47, \cdot)\) None 0 16
3600.1.fy \(\chi_{3600}(97, \cdot)\) None 0 16
3600.1.gc \(\chi_{3600}(139, \cdot)\) None 0 16
3600.1.gd \(\chi_{3600}(221, \cdot)\) None 0 16

Decomposition of \(S_{1}^{\mathrm{old}}(\Gamma_1(3600))\) into lower level spaces

\( S_{1}^{\mathrm{old}}(\Gamma_1(3600)) \cong \) \(S_{1}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 45}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 36}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 30}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 27}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 30}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 24}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 18}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 15}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 24}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 18}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 20}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 9}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 12}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 18}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 12}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 15}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(30))\)\(^{\oplus 16}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(36))\)\(^{\oplus 9}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(40))\)\(^{\oplus 12}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(45))\)\(^{\oplus 10}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(48))\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(50))\)\(^{\oplus 12}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(60))\)\(^{\oplus 12}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(72))\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(75))\)\(^{\oplus 10}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(80))\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(90))\)\(^{\oplus 8}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(100))\)\(^{\oplus 9}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(120))\)\(^{\oplus 8}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(144))\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(150))\)\(^{\oplus 8}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(180))\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(200))\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(225))\)\(^{\oplus 5}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(240))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(300))\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(360))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(400))\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(450))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(600))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(720))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(900))\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(1200))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(1800))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(3600))\)\(^{\oplus 1}\)