Properties

Label 360.6.a.l.1.2
Level 360
Weight 6
Character 360.1
Self dual yes
Analytic conductor 57.738
Analytic rank 1
Dimension 2
CM no
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 360 = 2^{3} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 360.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(57.7381751327\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{129}) \)
Defining polynomial: \(x^{2} - x - 32\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: no (minimal twist has level 40)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-5.17891\) of defining polynomial
Character \(\chi\) \(=\) 360.1

$q$-expansion

\(f(q)\) \(=\) \(q-25.0000 q^{5} +94.1469 q^{7} +O(q^{10})\) \(q-25.0000 q^{5} +94.1469 q^{7} -143.706 q^{11} +421.412 q^{13} -1982.11 q^{17} -1317.76 q^{19} +4020.02 q^{23} +625.000 q^{25} +6417.28 q^{29} -2350.64 q^{31} -2353.67 q^{35} -7876.58 q^{37} -15081.6 q^{41} +1141.40 q^{43} +21557.3 q^{47} -7943.36 q^{49} -9560.44 q^{53} +3592.65 q^{55} -42740.7 q^{59} +32132.1 q^{61} -10535.3 q^{65} -30371.4 q^{67} -36006.7 q^{71} -63438.0 q^{73} -13529.5 q^{77} -89922.8 q^{79} -38211.2 q^{83} +49552.8 q^{85} -5745.69 q^{89} +39674.7 q^{91} +32944.1 q^{95} +178780. q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 50q^{5} + 52q^{7} + O(q^{10}) \) \( 2q - 50q^{5} + 52q^{7} - 560q^{11} + 1388q^{13} - 148q^{17} - 1000q^{19} + 2452q^{23} + 1250q^{25} - 1340q^{29} - 2248q^{31} - 1300q^{35} - 5940q^{37} - 23076q^{41} + 17684q^{43} + 2908q^{47} - 22974q^{49} + 5412q^{53} + 14000q^{55} - 62584q^{59} + 14108q^{61} - 34700q^{65} - 85412q^{67} - 47208q^{71} - 67452q^{73} + 4016q^{77} - 65904q^{79} - 108724q^{83} + 3700q^{85} + 55020q^{89} - 1064q^{91} + 25000q^{95} + 147668q^{97} + O(q^{100}) \)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −25.0000 −0.447214
\(6\) 0 0
\(7\) 94.1469 0.726208 0.363104 0.931749i \(-0.381717\pi\)
0.363104 + 0.931749i \(0.381717\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −143.706 −0.358091 −0.179046 0.983841i \(-0.557301\pi\)
−0.179046 + 0.983841i \(0.557301\pi\)
\(12\) 0 0
\(13\) 421.412 0.691590 0.345795 0.938310i \(-0.387609\pi\)
0.345795 + 0.938310i \(0.387609\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1982.11 −1.66344 −0.831718 0.555198i \(-0.812642\pi\)
−0.831718 + 0.555198i \(0.812642\pi\)
\(18\) 0 0
\(19\) −1317.76 −0.837439 −0.418720 0.908116i \(-0.637521\pi\)
−0.418720 + 0.908116i \(0.637521\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4020.02 1.58456 0.792280 0.610157i \(-0.208894\pi\)
0.792280 + 0.610157i \(0.208894\pi\)
\(24\) 0 0
\(25\) 625.000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 6417.28 1.41695 0.708477 0.705734i \(-0.249383\pi\)
0.708477 + 0.705734i \(0.249383\pi\)
\(30\) 0 0
\(31\) −2350.64 −0.439322 −0.219661 0.975576i \(-0.570495\pi\)
−0.219661 + 0.975576i \(0.570495\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2353.67 −0.324770
\(36\) 0 0
\(37\) −7876.58 −0.945874 −0.472937 0.881096i \(-0.656806\pi\)
−0.472937 + 0.881096i \(0.656806\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −15081.6 −1.40116 −0.700582 0.713572i \(-0.747076\pi\)
−0.700582 + 0.713572i \(0.747076\pi\)
\(42\) 0 0
\(43\) 1141.40 0.0941384 0.0470692 0.998892i \(-0.485012\pi\)
0.0470692 + 0.998892i \(0.485012\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 21557.3 1.42348 0.711738 0.702445i \(-0.247908\pi\)
0.711738 + 0.702445i \(0.247908\pi\)
\(48\) 0 0
\(49\) −7943.36 −0.472622
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −9560.44 −0.467507 −0.233754 0.972296i \(-0.575101\pi\)
−0.233754 + 0.972296i \(0.575101\pi\)
\(54\) 0 0
\(55\) 3592.65 0.160143
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −42740.7 −1.59850 −0.799248 0.601002i \(-0.794768\pi\)
−0.799248 + 0.601002i \(0.794768\pi\)
\(60\) 0 0
\(61\) 32132.1 1.10564 0.552820 0.833301i \(-0.313552\pi\)
0.552820 + 0.833301i \(0.313552\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −10535.3 −0.309289
\(66\) 0 0
\(67\) −30371.4 −0.826567 −0.413283 0.910602i \(-0.635618\pi\)
−0.413283 + 0.910602i \(0.635618\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −36006.7 −0.847692 −0.423846 0.905734i \(-0.639320\pi\)
−0.423846 + 0.905734i \(0.639320\pi\)
\(72\) 0 0
\(73\) −63438.0 −1.39329 −0.696647 0.717414i \(-0.745326\pi\)
−0.696647 + 0.717414i \(0.745326\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −13529.5 −0.260049
\(78\) 0 0
\(79\) −89922.8 −1.62107 −0.810536 0.585689i \(-0.800824\pi\)
−0.810536 + 0.585689i \(0.800824\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −38211.2 −0.608829 −0.304414 0.952540i \(-0.598461\pi\)
−0.304414 + 0.952540i \(0.598461\pi\)
\(84\) 0 0
\(85\) 49552.8 0.743911
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −5745.69 −0.0768895 −0.0384447 0.999261i \(-0.512240\pi\)
−0.0384447 + 0.999261i \(0.512240\pi\)
\(90\) 0 0
\(91\) 39674.7 0.502238
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 32944.1 0.374514
\(96\) 0 0
\(97\) 178780. 1.92926 0.964629 0.263613i \(-0.0849140\pi\)
0.964629 + 0.263613i \(0.0849140\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −152223. −1.48483 −0.742417 0.669938i \(-0.766321\pi\)
−0.742417 + 0.669938i \(0.766321\pi\)
\(102\) 0 0
\(103\) −35830.1 −0.332778 −0.166389 0.986060i \(-0.553211\pi\)
−0.166389 + 0.986060i \(0.553211\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −70030.2 −0.591324 −0.295662 0.955293i \(-0.595540\pi\)
−0.295662 + 0.955293i \(0.595540\pi\)
\(108\) 0 0
\(109\) 38466.9 0.310114 0.155057 0.987906i \(-0.450444\pi\)
0.155057 + 0.987906i \(0.450444\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −39951.6 −0.294333 −0.147166 0.989112i \(-0.547015\pi\)
−0.147166 + 0.989112i \(0.547015\pi\)
\(114\) 0 0
\(115\) −100501. −0.708637
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −186610. −1.20800
\(120\) 0 0
\(121\) −140400. −0.871771
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −15625.0 −0.0894427
\(126\) 0 0
\(127\) −233239. −1.28319 −0.641596 0.767043i \(-0.721727\pi\)
−0.641596 + 0.767043i \(0.721727\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −55237.0 −0.281224 −0.140612 0.990065i \(-0.544907\pi\)
−0.140612 + 0.990065i \(0.544907\pi\)
\(132\) 0 0
\(133\) −124063. −0.608155
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −261520. −1.19043 −0.595215 0.803566i \(-0.702933\pi\)
−0.595215 + 0.803566i \(0.702933\pi\)
\(138\) 0 0
\(139\) 293366. 1.28787 0.643935 0.765080i \(-0.277301\pi\)
0.643935 + 0.765080i \(0.277301\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −60559.6 −0.247653
\(144\) 0 0
\(145\) −160432. −0.633681
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 304505. 1.12364 0.561822 0.827258i \(-0.310101\pi\)
0.561822 + 0.827258i \(0.310101\pi\)
\(150\) 0 0
\(151\) −337909. −1.20603 −0.603015 0.797730i \(-0.706034\pi\)
−0.603015 + 0.797730i \(0.706034\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 58766.1 0.196471
\(156\) 0 0
\(157\) 68385.9 0.221420 0.110710 0.993853i \(-0.464687\pi\)
0.110710 + 0.993853i \(0.464687\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 378473. 1.15072
\(162\) 0 0
\(163\) −404471. −1.19239 −0.596195 0.802840i \(-0.703322\pi\)
−0.596195 + 0.802840i \(0.703322\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −411733. −1.14242 −0.571209 0.820805i \(-0.693525\pi\)
−0.571209 + 0.820805i \(0.693525\pi\)
\(168\) 0 0
\(169\) −193705. −0.521703
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 162247. 0.412155 0.206077 0.978536i \(-0.433930\pi\)
0.206077 + 0.978536i \(0.433930\pi\)
\(174\) 0 0
\(175\) 58841.8 0.145242
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −384396. −0.896698 −0.448349 0.893859i \(-0.647988\pi\)
−0.448349 + 0.893859i \(0.647988\pi\)
\(180\) 0 0
\(181\) 579219. 1.31415 0.657077 0.753823i \(-0.271792\pi\)
0.657077 + 0.753823i \(0.271792\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 196914. 0.423008
\(186\) 0 0
\(187\) 284842. 0.595662
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −142455. −0.282550 −0.141275 0.989970i \(-0.545120\pi\)
−0.141275 + 0.989970i \(0.545120\pi\)
\(192\) 0 0
\(193\) 267272. 0.516487 0.258244 0.966080i \(-0.416856\pi\)
0.258244 + 0.966080i \(0.416856\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −14189.5 −0.0260496 −0.0130248 0.999915i \(-0.504146\pi\)
−0.0130248 + 0.999915i \(0.504146\pi\)
\(198\) 0 0
\(199\) 169198. 0.302875 0.151437 0.988467i \(-0.451610\pi\)
0.151437 + 0.988467i \(0.451610\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 604167. 1.02900
\(204\) 0 0
\(205\) 377041. 0.626619
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 189371. 0.299880
\(210\) 0 0
\(211\) −407591. −0.630259 −0.315129 0.949049i \(-0.602048\pi\)
−0.315129 + 0.949049i \(0.602048\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −28535.0 −0.0421000
\(216\) 0 0
\(217\) −221306. −0.319039
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −835287. −1.15042
\(222\) 0 0
\(223\) −103743. −0.139700 −0.0698500 0.997558i \(-0.522252\pi\)
−0.0698500 + 0.997558i \(0.522252\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 803726. 1.03524 0.517622 0.855609i \(-0.326817\pi\)
0.517622 + 0.855609i \(0.326817\pi\)
\(228\) 0 0
\(229\) 1.35955e6 1.71319 0.856596 0.515988i \(-0.172575\pi\)
0.856596 + 0.515988i \(0.172575\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 622827. 0.751584 0.375792 0.926704i \(-0.377371\pi\)
0.375792 + 0.926704i \(0.377371\pi\)
\(234\) 0 0
\(235\) −538933. −0.636598
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 642843. 0.727964 0.363982 0.931406i \(-0.381417\pi\)
0.363982 + 0.931406i \(0.381417\pi\)
\(240\) 0 0
\(241\) 1.11814e6 1.24009 0.620046 0.784566i \(-0.287114\pi\)
0.620046 + 0.784566i \(0.287114\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 198584. 0.211363
\(246\) 0 0
\(247\) −555322. −0.579165
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −731067. −0.732442 −0.366221 0.930528i \(-0.619349\pi\)
−0.366221 + 0.930528i \(0.619349\pi\)
\(252\) 0 0
\(253\) −577702. −0.567418
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1.76622e6 1.66806 0.834030 0.551720i \(-0.186028\pi\)
0.834030 + 0.551720i \(0.186028\pi\)
\(258\) 0 0
\(259\) −741555. −0.686901
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −1.00926e6 −0.899735 −0.449868 0.893095i \(-0.648529\pi\)
−0.449868 + 0.893095i \(0.648529\pi\)
\(264\) 0 0
\(265\) 239011. 0.209076
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 775681. 0.653585 0.326793 0.945096i \(-0.394032\pi\)
0.326793 + 0.945096i \(0.394032\pi\)
\(270\) 0 0
\(271\) 1.21395e6 1.00410 0.502052 0.864837i \(-0.332578\pi\)
0.502052 + 0.864837i \(0.332578\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −89816.4 −0.0716183
\(276\) 0 0
\(277\) −218505. −0.171104 −0.0855522 0.996334i \(-0.527265\pi\)
−0.0855522 + 0.996334i \(0.527265\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 316219. 0.238903 0.119452 0.992840i \(-0.461886\pi\)
0.119452 + 0.992840i \(0.461886\pi\)
\(282\) 0 0
\(283\) −927934. −0.688733 −0.344366 0.938835i \(-0.611906\pi\)
−0.344366 + 0.938835i \(0.611906\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −1.41989e6 −1.01754
\(288\) 0 0
\(289\) 2.50892e6 1.76702
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −262992. −0.178967 −0.0894835 0.995988i \(-0.528522\pi\)
−0.0894835 + 0.995988i \(0.528522\pi\)
\(294\) 0 0
\(295\) 1.06852e6 0.714869
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 1.69409e6 1.09587
\(300\) 0 0
\(301\) 107459. 0.0683640
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −803301. −0.494458
\(306\) 0 0
\(307\) 2.15704e6 1.30621 0.653104 0.757269i \(-0.273467\pi\)
0.653104 + 0.757269i \(0.273467\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 2.33078e6 1.36647 0.683235 0.730199i \(-0.260573\pi\)
0.683235 + 0.730199i \(0.260573\pi\)
\(312\) 0 0
\(313\) −1.12235e6 −0.647539 −0.323769 0.946136i \(-0.604950\pi\)
−0.323769 + 0.946136i \(0.604950\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.27955e6 0.715169 0.357584 0.933881i \(-0.383600\pi\)
0.357584 + 0.933881i \(0.383600\pi\)
\(318\) 0 0
\(319\) −922203. −0.507399
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 2.61196e6 1.39303
\(324\) 0 0
\(325\) 263383. 0.138318
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 2.02956e6 1.03374
\(330\) 0 0
\(331\) −2.09571e6 −1.05138 −0.525691 0.850675i \(-0.676193\pi\)
−0.525691 + 0.850675i \(0.676193\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 759285. 0.369652
\(336\) 0 0
\(337\) −571289. −0.274019 −0.137010 0.990570i \(-0.543749\pi\)
−0.137010 + 0.990570i \(0.543749\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 337802. 0.157317
\(342\) 0 0
\(343\) −2.33017e6 −1.06943
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −2.24067e6 −0.998973 −0.499486 0.866322i \(-0.666478\pi\)
−0.499486 + 0.866322i \(0.666478\pi\)
\(348\) 0 0
\(349\) 130448. 0.0573290 0.0286645 0.999589i \(-0.490875\pi\)
0.0286645 + 0.999589i \(0.490875\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −1.95452e6 −0.834839 −0.417420 0.908714i \(-0.637065\pi\)
−0.417420 + 0.908714i \(0.637065\pi\)
\(354\) 0 0
\(355\) 900168. 0.379099
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 850543. 0.348305 0.174153 0.984719i \(-0.444281\pi\)
0.174153 + 0.984719i \(0.444281\pi\)
\(360\) 0 0
\(361\) −739600. −0.298696
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1.58595e6 0.623100
\(366\) 0 0
\(367\) −1.50673e6 −0.583941 −0.291970 0.956427i \(-0.594311\pi\)
−0.291970 + 0.956427i \(0.594311\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −900086. −0.339507
\(372\) 0 0
\(373\) 2.90602e6 1.08150 0.540749 0.841184i \(-0.318141\pi\)
0.540749 + 0.841184i \(0.318141\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 2.70432e6 0.979952
\(378\) 0 0
\(379\) 5.16710e6 1.84777 0.923887 0.382665i \(-0.124994\pi\)
0.923887 + 0.382665i \(0.124994\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −3.85088e6 −1.34142 −0.670708 0.741721i \(-0.734010\pi\)
−0.670708 + 0.741721i \(0.734010\pi\)
\(384\) 0 0
\(385\) 338237. 0.116297
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −5.49855e6 −1.84236 −0.921179 0.389138i \(-0.872773\pi\)
−0.921179 + 0.389138i \(0.872773\pi\)
\(390\) 0 0
\(391\) −7.96814e6 −2.63582
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 2.24807e6 0.724965
\(396\) 0 0
\(397\) 1.71425e6 0.545881 0.272941 0.962031i \(-0.412004\pi\)
0.272941 + 0.962031i \(0.412004\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −3.63329e6 −1.12834 −0.564169 0.825660i \(-0.690803\pi\)
−0.564169 + 0.825660i \(0.690803\pi\)
\(402\) 0 0
\(403\) −990591. −0.303831
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.13191e6 0.338709
\(408\) 0 0
\(409\) −1.38246e6 −0.408642 −0.204321 0.978904i \(-0.565499\pi\)
−0.204321 + 0.978904i \(0.565499\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −4.02390e6 −1.16084
\(414\) 0 0
\(415\) 955280. 0.272277
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −2.55435e6 −0.710795 −0.355398 0.934715i \(-0.615655\pi\)
−0.355398 + 0.934715i \(0.615655\pi\)
\(420\) 0 0
\(421\) −1.68110e6 −0.462263 −0.231132 0.972923i \(-0.574243\pi\)
−0.231132 + 0.972923i \(0.574243\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −1.23882e6 −0.332687
\(426\) 0 0
\(427\) 3.02513e6 0.802925
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 2.32369e6 0.602539 0.301269 0.953539i \(-0.402590\pi\)
0.301269 + 0.953539i \(0.402590\pi\)
\(432\) 0 0
\(433\) −4.06439e6 −1.04178 −0.520890 0.853624i \(-0.674400\pi\)
−0.520890 + 0.853624i \(0.674400\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −5.29744e6 −1.32697
\(438\) 0 0
\(439\) 6.39272e6 1.58316 0.791579 0.611066i \(-0.209259\pi\)
0.791579 + 0.611066i \(0.209259\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −3.23515e6 −0.783222 −0.391611 0.920131i \(-0.628082\pi\)
−0.391611 + 0.920131i \(0.628082\pi\)
\(444\) 0 0
\(445\) 143642. 0.0343860
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 2.74812e6 0.643310 0.321655 0.946857i \(-0.395761\pi\)
0.321655 + 0.946857i \(0.395761\pi\)
\(450\) 0 0
\(451\) 2.16732e6 0.501745
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −991867. −0.224608
\(456\) 0 0
\(457\) −5.37326e6 −1.20350 −0.601751 0.798684i \(-0.705530\pi\)
−0.601751 + 0.798684i \(0.705530\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 8.19928e6 1.79690 0.898449 0.439078i \(-0.144695\pi\)
0.898449 + 0.439078i \(0.144695\pi\)
\(462\) 0 0
\(463\) 3.76963e6 0.817233 0.408617 0.912706i \(-0.366011\pi\)
0.408617 + 0.912706i \(0.366011\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −6.03412e6 −1.28033 −0.640165 0.768237i \(-0.721134\pi\)
−0.640165 + 0.768237i \(0.721134\pi\)
\(468\) 0 0
\(469\) −2.85937e6 −0.600259
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −164026. −0.0337101
\(474\) 0 0
\(475\) −823602. −0.167488
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 5.26406e6 1.04829 0.524146 0.851629i \(-0.324385\pi\)
0.524146 + 0.851629i \(0.324385\pi\)
\(480\) 0 0
\(481\) −3.31929e6 −0.654157
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −4.46951e6 −0.862790
\(486\) 0 0
\(487\) −2.19979e6 −0.420300 −0.210150 0.977669i \(-0.567395\pi\)
−0.210150 + 0.977669i \(0.567395\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −6.47314e6 −1.21174 −0.605872 0.795562i \(-0.707176\pi\)
−0.605872 + 0.795562i \(0.707176\pi\)
\(492\) 0 0
\(493\) −1.27198e7 −2.35701
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −3.38992e6 −0.615600
\(498\) 0 0
\(499\) 8.62090e6 1.54989 0.774946 0.632028i \(-0.217777\pi\)
0.774946 + 0.632028i \(0.217777\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −8.10557e6 −1.42845 −0.714223 0.699918i \(-0.753220\pi\)
−0.714223 + 0.699918i \(0.753220\pi\)
\(504\) 0 0
\(505\) 3.80559e6 0.664038
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 6.39610e6 1.09426 0.547131 0.837047i \(-0.315720\pi\)
0.547131 + 0.837047i \(0.315720\pi\)
\(510\) 0 0
\(511\) −5.97250e6 −1.01182
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 895752. 0.148823
\(516\) 0 0
\(517\) −3.09792e6 −0.509735
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −7.53647e6 −1.21639 −0.608197 0.793786i \(-0.708107\pi\)
−0.608197 + 0.793786i \(0.708107\pi\)
\(522\) 0 0
\(523\) 1.87780e6 0.300189 0.150095 0.988672i \(-0.452042\pi\)
0.150095 + 0.988672i \(0.452042\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 4.65924e6 0.730784
\(528\) 0 0
\(529\) 9.72424e6 1.51083
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −6.35559e6 −0.969031
\(534\) 0 0
\(535\) 1.75075e6 0.264448
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 1.14151e6 0.169242
\(540\) 0 0
\(541\) 2.44482e6 0.359131 0.179566 0.983746i \(-0.442531\pi\)
0.179566 + 0.983746i \(0.442531\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −961672. −0.138687
\(546\) 0 0
\(547\) −1.09485e7 −1.56453 −0.782266 0.622944i \(-0.785936\pi\)
−0.782266 + 0.622944i \(0.785936\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −8.45645e6 −1.18661
\(552\) 0 0
\(553\) −8.46595e6 −1.17723
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 768938. 0.105015 0.0525077 0.998621i \(-0.483279\pi\)
0.0525077 + 0.998621i \(0.483279\pi\)
\(558\) 0 0
\(559\) 481000. 0.0651052
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 1.47386e7 1.95968 0.979838 0.199792i \(-0.0640265\pi\)
0.979838 + 0.199792i \(0.0640265\pi\)
\(564\) 0 0
\(565\) 998791. 0.131630
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 3.33696e6 0.432086 0.216043 0.976384i \(-0.430685\pi\)
0.216043 + 0.976384i \(0.430685\pi\)
\(570\) 0 0
\(571\) 1.54413e7 1.98195 0.990974 0.134051i \(-0.0427986\pi\)
0.990974 + 0.134051i \(0.0427986\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 2.51251e6 0.316912
\(576\) 0 0
\(577\) −4.05636e6 −0.507221 −0.253610 0.967306i \(-0.581618\pi\)
−0.253610 + 0.967306i \(0.581618\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −3.59746e6 −0.442136
\(582\) 0 0
\(583\) 1.37389e6 0.167410
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1.22567e7 1.46818 0.734090 0.679052i \(-0.237609\pi\)
0.734090 + 0.679052i \(0.237609\pi\)
\(588\) 0 0
\(589\) 3.09759e6 0.367905
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −8.58993e6 −1.00312 −0.501560 0.865123i \(-0.667240\pi\)
−0.501560 + 0.865123i \(0.667240\pi\)
\(594\) 0 0
\(595\) 4.66525e6 0.540234
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −8.85849e6 −1.00877 −0.504386 0.863479i \(-0.668281\pi\)
−0.504386 + 0.863479i \(0.668281\pi\)
\(600\) 0 0
\(601\) −8.50579e6 −0.960569 −0.480284 0.877113i \(-0.659467\pi\)
−0.480284 + 0.877113i \(0.659467\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 3.50999e6 0.389868
\(606\) 0 0
\(607\) −3.15481e6 −0.347537 −0.173768 0.984787i \(-0.555594\pi\)
−0.173768 + 0.984787i \(0.555594\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 9.08453e6 0.984463
\(612\) 0 0
\(613\) 3.20689e6 0.344694 0.172347 0.985036i \(-0.444865\pi\)
0.172347 + 0.985036i \(0.444865\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1.31916e6 0.139504 0.0697519 0.997564i \(-0.477779\pi\)
0.0697519 + 0.997564i \(0.477779\pi\)
\(618\) 0 0
\(619\) −3.36061e6 −0.352526 −0.176263 0.984343i \(-0.556401\pi\)
−0.176263 + 0.984343i \(0.556401\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −540939. −0.0558377
\(624\) 0 0
\(625\) 390625. 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1.56123e7 1.57340
\(630\) 0 0
\(631\) −1.46547e7 −1.46522 −0.732610 0.680648i \(-0.761698\pi\)
−0.732610 + 0.680648i \(0.761698\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 5.83097e6 0.573861
\(636\) 0 0
\(637\) −3.34743e6 −0.326861
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 5.67545e6 0.545576 0.272788 0.962074i \(-0.412054\pi\)
0.272788 + 0.962074i \(0.412054\pi\)
\(642\) 0 0
\(643\) −1.81422e7 −1.73047 −0.865233 0.501370i \(-0.832830\pi\)
−0.865233 + 0.501370i \(0.832830\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −472390. −0.0443649 −0.0221825 0.999754i \(-0.507061\pi\)
−0.0221825 + 0.999754i \(0.507061\pi\)
\(648\) 0 0
\(649\) 6.14210e6 0.572407
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −9.79442e6 −0.898867 −0.449434 0.893314i \(-0.648374\pi\)
−0.449434 + 0.893314i \(0.648374\pi\)
\(654\) 0 0
\(655\) 1.38092e6 0.125767
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 9.83251e6 0.881964 0.440982 0.897516i \(-0.354630\pi\)
0.440982 + 0.897516i \(0.354630\pi\)
\(660\) 0 0
\(661\) 1.84120e6 0.163907 0.0819535 0.996636i \(-0.473884\pi\)
0.0819535 + 0.996636i \(0.473884\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 3.10158e6 0.271975
\(666\) 0 0
\(667\) 2.57976e7 2.24525
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −4.61758e6 −0.395920
\(672\) 0 0
\(673\) −1.02990e7 −0.876510 −0.438255 0.898851i \(-0.644403\pi\)
−0.438255 + 0.898851i \(0.644403\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 3.63461e6 0.304779 0.152390 0.988320i \(-0.451303\pi\)
0.152390 + 0.988320i \(0.451303\pi\)
\(678\) 0 0
\(679\) 1.68316e7 1.40104
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 9.78443e6 0.802571 0.401286 0.915953i \(-0.368563\pi\)
0.401286 + 0.915953i \(0.368563\pi\)
\(684\) 0 0
\(685\) 6.53801e6 0.532377
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −4.02889e6 −0.323323
\(690\) 0 0
\(691\) 4.67949e6 0.372824 0.186412 0.982472i \(-0.440314\pi\)
0.186412 + 0.982472i \(0.440314\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −7.33414e6 −0.575953
\(696\) 0 0
\(697\) 2.98935e7 2.33075
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 565147. 0.0434376 0.0217188 0.999764i \(-0.493086\pi\)
0.0217188 + 0.999764i \(0.493086\pi\)
\(702\) 0 0
\(703\) 1.03795e7 0.792112
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1.43314e7 −1.07830
\(708\) 0 0
\(709\) −1.00907e6 −0.0753889 −0.0376944 0.999289i \(-0.512001\pi\)
−0.0376944 + 0.999289i \(0.512001\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −9.44964e6 −0.696132
\(714\) 0 0
\(715\) 1.51399e6 0.110754
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 6.02329e6 0.434522 0.217261 0.976114i \(-0.430288\pi\)
0.217261 + 0.976114i \(0.430288\pi\)
\(720\) 0 0
\(721\) −3.37329e6 −0.241666
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 4.01080e6 0.283391
\(726\) 0 0
\(727\) −2.30828e6 −0.161977 −0.0809883 0.996715i \(-0.525808\pi\)
−0.0809883 + 0.996715i \(0.525808\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −2.26238e6 −0.156593
\(732\) 0 0
\(733\) −1.65224e7 −1.13583 −0.567914 0.823088i \(-0.692249\pi\)
−0.567914 + 0.823088i \(0.692249\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 4.36456e6 0.295986
\(738\) 0 0
\(739\) 2.41051e7 1.62367 0.811834 0.583888i \(-0.198469\pi\)
0.811834 + 0.583888i \(0.198469\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 2.54593e7 1.69190 0.845950 0.533262i \(-0.179034\pi\)
0.845950 + 0.533262i \(0.179034\pi\)
\(744\) 0 0
\(745\) −7.61262e6 −0.502508
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −6.59312e6 −0.429424
\(750\) 0 0
\(751\) −1.25073e7 −0.809215 −0.404608 0.914490i \(-0.632592\pi\)
−0.404608 + 0.914490i \(0.632592\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 8.44773e6 0.539353
\(756\) 0 0
\(757\) −5.34914e6 −0.339269 −0.169635 0.985507i \(-0.554259\pi\)
−0.169635 + 0.985507i \(0.554259\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1.80369e7 1.12901 0.564507 0.825428i \(-0.309066\pi\)
0.564507 + 0.825428i \(0.309066\pi\)
\(762\) 0 0
\(763\) 3.62154e6 0.225207
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −1.80115e7 −1.10550
\(768\) 0 0
\(769\) 2.41928e7 1.47526 0.737632 0.675203i \(-0.235944\pi\)
0.737632 + 0.675203i \(0.235944\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 3.22531e6 0.194143 0.0970716 0.995277i \(-0.469052\pi\)
0.0970716 + 0.995277i \(0.469052\pi\)
\(774\) 0 0
\(775\) −1.46915e6 −0.0878643
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1.98740e7 1.17339
\(780\) 0 0
\(781\) 5.17439e6 0.303551
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −1.70965e6 −0.0990221
\(786\) 0 0
\(787\) −1.12227e6 −0.0645896 −0.0322948 0.999478i \(-0.510282\pi\)
−0.0322948 + 0.999478i \(0.510282\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −3.76132e6 −0.213747
\(792\) 0 0
\(793\) 1.35408e7 0.764650
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1.48763e7 0.829560 0.414780 0.909922i \(-0.363859\pi\)
0.414780 + 0.909922i \(0.363859\pi\)
\(798\) 0 0
\(799\) −4.27291e7 −2.36786
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 9.11644e6 0.498926
\(804\) 0 0
\(805\) −9.46182e6 −0.514618
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −1.86436e7 −1.00152 −0.500759 0.865587i \(-0.666946\pi\)
−0.500759 + 0.865587i \(0.666946\pi\)
\(810\) 0 0
\(811\) 4.50701e6 0.240623 0.120311 0.992736i \(-0.461611\pi\)
0.120311 + 0.992736i \(0.461611\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 1.01118e7 0.533253
\(816\) 0 0
\(817\) −1.50409e6 −0.0788352
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 2.26560e7 1.17307 0.586537 0.809922i \(-0.300491\pi\)
0.586537 + 0.809922i \(0.300491\pi\)
\(822\) 0 0
\(823\) −2.76806e7 −1.42454 −0.712272 0.701903i \(-0.752334\pi\)
−0.712272 + 0.701903i \(0.752334\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 7.42673e6 0.377602 0.188801 0.982015i \(-0.439540\pi\)
0.188801 + 0.982015i \(0.439540\pi\)
\(828\) 0 0
\(829\) 3.41770e7 1.72722 0.863610 0.504160i \(-0.168198\pi\)
0.863610 + 0.504160i \(0.168198\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 1.57446e7 0.786177
\(834\) 0 0
\(835\) 1.02933e7 0.510905
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −155990. −0.00765051 −0.00382526 0.999993i \(-0.501218\pi\)
−0.00382526 + 0.999993i \(0.501218\pi\)
\(840\) 0 0
\(841\) 2.06703e7 1.00776
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 4.84261e6 0.233313
\(846\) 0 0
\(847\) −1.32182e7 −0.633087
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −3.16640e7 −1.49879
\(852\) 0 0
\(853\) −2.52778e7 −1.18951 −0.594754 0.803908i \(-0.702750\pi\)
−0.594754 + 0.803908i \(0.702750\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1.40854e6 −0.0655112 −0.0327556 0.999463i \(-0.510428\pi\)
−0.0327556 + 0.999463i \(0.510428\pi\)
\(858\) 0 0
\(859\) −246158. −0.0113823 −0.00569116 0.999984i \(-0.501812\pi\)
−0.00569116 + 0.999984i \(0.501812\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −1.17019e7 −0.534849 −0.267424 0.963579i \(-0.586173\pi\)
−0.267424 + 0.963579i \(0.586173\pi\)
\(864\) 0 0
\(865\) −4.05616e6 −0.184321
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1.29225e7 0.580492
\(870\) 0 0
\(871\) −1.27989e7 −0.571646
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −1.47105e6 −0.0649540
\(876\) 0 0
\(877\) −7.85174e6 −0.344720 −0.172360 0.985034i \(-0.555139\pi\)
−0.172360 + 0.985034i \(0.555139\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −105461. −0.00457777 −0.00228888 0.999997i \(-0.500729\pi\)
−0.00228888 + 0.999997i \(0.500729\pi\)
\(882\) 0 0
\(883\) 1.43760e7 0.620491 0.310245 0.950656i \(-0.399589\pi\)
0.310245 + 0.950656i \(0.399589\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −2.71725e7 −1.15963 −0.579816 0.814748i \(-0.696875\pi\)
−0.579816 + 0.814748i \(0.696875\pi\)
\(888\) 0 0
\(889\) −2.19587e7 −0.931864
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −2.84075e7 −1.19208
\(894\) 0 0
\(895\) 9.60990e6 0.401016
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −1.50847e7 −0.622499
\(900\) 0 0
\(901\) 1.89499e7 0.777668
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −1.44805e7 −0.587708
\(906\) 0 0
\(907\) −5.25290e6 −0.212022 −0.106011 0.994365i \(-0.533808\pi\)
−0.106011 + 0.994365i \(0.533808\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −2.68057e7 −1.07012 −0.535059 0.844815i \(-0.679711\pi\)
−0.535059 + 0.844815i \(0.679711\pi\)
\(912\) 0 0
\(913\) 5.49118e6 0.218016
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −5.20039e6 −0.204227
\(918\) 0 0
\(919\) −1.25954e7 −0.491951 −0.245976 0.969276i \(-0.579108\pi\)
−0.245976 + 0.969276i \(0.579108\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −1.51737e7 −0.586255
\(924\) 0 0
\(925\) −4.92286e6 −0.189175
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 3.23322e7 1.22912 0.614562 0.788868i \(-0.289333\pi\)
0.614562 + 0.788868i \(0.289333\pi\)
\(930\) 0 0
\(931\) 1.04675e7 0.395792
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −7.12105e6 −0.266388
\(936\) 0 0
\(937\) 2.04882e7 0.762350 0.381175 0.924503i \(-0.375519\pi\)
0.381175 + 0.924503i \(0.375519\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 5.87135e6 0.216154 0.108077 0.994143i \(-0.465531\pi\)
0.108077 + 0.994143i \(0.465531\pi\)
\(942\) 0 0
\(943\) −6.06285e7 −2.22023
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1.86718e7 0.676567 0.338284 0.941044i \(-0.390154\pi\)
0.338284 + 0.941044i \(0.390154\pi\)
\(948\) 0 0
\(949\) −2.67336e7 −0.963588
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −1.55896e7 −0.556037 −0.278018 0.960576i \(-0.589678\pi\)
−0.278018 + 0.960576i \(0.589678\pi\)
\(954\) 0 0
\(955\) 3.56139e6 0.126360
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −2.46213e7 −0.864500
\(960\) 0 0
\(961\) −2.31036e7 −0.806996
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −6.68179e6 −0.230980
\(966\) 0 0
\(967\) −3.24491e7 −1.11593 −0.557964 0.829865i \(-0.688417\pi\)
−0.557964 + 0.829865i \(0.688417\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −3.73661e7 −1.27183 −0.635916 0.771758i \(-0.719378\pi\)
−0.635916 + 0.771758i \(0.719378\pi\)
\(972\) 0 0
\(973\) 2.76195e7 0.935261
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 5.23874e7 1.75586 0.877931 0.478787i \(-0.158923\pi\)
0.877931 + 0.478787i \(0.158923\pi\)
\(978\) 0 0
\(979\) 825691. 0.0275335
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 4.75140e7 1.56833 0.784166 0.620551i \(-0.213091\pi\)
0.784166 + 0.620551i \(0.213091\pi\)
\(984\) 0 0
\(985\) 354737. 0.0116497
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 4.58846e6 0.149168
\(990\) 0 0
\(991\) 2.47278e7 0.799835 0.399918 0.916551i \(-0.369039\pi\)
0.399918 + 0.916551i \(0.369039\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −4.22995e6 −0.135450
\(996\) 0 0
\(997\) 1.25139e7 0.398709 0.199355 0.979927i \(-0.436115\pi\)
0.199355 + 0.979927i \(0.436115\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 360.6.a.l.1.2 2
3.2 odd 2 40.6.a.d.1.2 2
4.3 odd 2 720.6.a.z.1.1 2
12.11 even 2 80.6.a.i.1.1 2
15.2 even 4 200.6.c.e.49.2 4
15.8 even 4 200.6.c.e.49.3 4
15.14 odd 2 200.6.a.g.1.1 2
24.5 odd 2 320.6.a.w.1.1 2
24.11 even 2 320.6.a.q.1.2 2
60.23 odd 4 400.6.c.l.49.2 4
60.47 odd 4 400.6.c.l.49.3 4
60.59 even 2 400.6.a.q.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.6.a.d.1.2 2 3.2 odd 2
80.6.a.i.1.1 2 12.11 even 2
200.6.a.g.1.1 2 15.14 odd 2
200.6.c.e.49.2 4 15.2 even 4
200.6.c.e.49.3 4 15.8 even 4
320.6.a.q.1.2 2 24.11 even 2
320.6.a.w.1.1 2 24.5 odd 2
360.6.a.l.1.2 2 1.1 even 1 trivial
400.6.a.q.1.2 2 60.59 even 2
400.6.c.l.49.2 4 60.23 odd 4
400.6.c.l.49.3 4 60.47 odd 4
720.6.a.z.1.1 2 4.3 odd 2