# Properties

 Label 360.6.a.l Level 360 Weight 6 Character orbit 360.a Self dual yes Analytic conductor 57.738 Analytic rank 1 Dimension 2 CM no Inner twists 1

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$360 = 2^{3} \cdot 3^{2} \cdot 5$$ Weight: $$k$$ $$=$$ $$6$$ Character orbit: $$[\chi]$$ $$=$$ 360.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$57.7381751327$$ Analytic rank: $$1$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{129})$$ Defining polynomial: $$x^{2} - x - 32$$ Coefficient ring: $$\Z[a_1, \ldots, a_{7}]$$ Coefficient ring index: $$2^{2}\cdot 3$$ Twist minimal: no (minimal twist has level 40) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of $$\beta = 6\sqrt{129}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q -25 q^{5} + ( 26 - \beta ) q^{7} +O(q^{10})$$ $$q -25 q^{5} + ( 26 - \beta ) q^{7} + ( -280 - 2 \beta ) q^{11} + ( 694 + 4 \beta ) q^{13} + ( -74 + 28 \beta ) q^{17} + ( -500 + 12 \beta ) q^{19} + ( 1226 - 41 \beta ) q^{23} + 625 q^{25} + ( -670 - 104 \beta ) q^{29} + ( -1124 + 18 \beta ) q^{31} + ( -650 + 25 \beta ) q^{35} + ( -2970 + 72 \beta ) q^{37} + ( -11538 + 52 \beta ) q^{41} + ( 8842 + 113 \beta ) q^{43} + ( 1454 - 295 \beta ) q^{47} + ( -11487 - 52 \beta ) q^{49} + ( 2706 + 180 \beta ) q^{53} + ( 7000 + 50 \beta ) q^{55} + ( -31292 + 168 \beta ) q^{59} + ( 7054 - 368 \beta ) q^{61} + ( -17350 - 100 \beta ) q^{65} + ( -42706 - 181 \beta ) q^{67} + ( -23604 + 182 \beta ) q^{71} + ( -33726 + 436 \beta ) q^{73} + ( 2008 + 228 \beta ) q^{77} + ( -32952 + 836 \beta ) q^{79} + ( -54362 - 237 \beta ) q^{83} + ( 1850 - 700 \beta ) q^{85} + ( 27510 + 488 \beta ) q^{89} + ( -532 - 590 \beta ) q^{91} + ( 12500 - 300 \beta ) q^{95} + ( 73834 - 1540 \beta ) q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q - 50q^{5} + 52q^{7} + O(q^{10})$$ $$2q - 50q^{5} + 52q^{7} - 560q^{11} + 1388q^{13} - 148q^{17} - 1000q^{19} + 2452q^{23} + 1250q^{25} - 1340q^{29} - 2248q^{31} - 1300q^{35} - 5940q^{37} - 23076q^{41} + 17684q^{43} + 2908q^{47} - 22974q^{49} + 5412q^{53} + 14000q^{55} - 62584q^{59} + 14108q^{61} - 34700q^{65} - 85412q^{67} - 47208q^{71} - 67452q^{73} + 4016q^{77} - 65904q^{79} - 108724q^{83} + 3700q^{85} + 55020q^{89} - 1064q^{91} + 25000q^{95} + 147668q^{97} + O(q^{100})$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 6.17891 −5.17891
0 0 0 −25.0000 0 −42.1469 0 0 0
1.2 0 0 0 −25.0000 0 94.1469 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 360.6.a.l 2
3.b odd 2 1 40.6.a.d 2
4.b odd 2 1 720.6.a.z 2
12.b even 2 1 80.6.a.i 2
15.d odd 2 1 200.6.a.g 2
15.e even 4 2 200.6.c.e 4
24.f even 2 1 320.6.a.q 2
24.h odd 2 1 320.6.a.w 2
60.h even 2 1 400.6.a.q 2
60.l odd 4 2 400.6.c.l 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
40.6.a.d 2 3.b odd 2 1
80.6.a.i 2 12.b even 2 1
200.6.a.g 2 15.d odd 2 1
200.6.c.e 4 15.e even 4 2
320.6.a.q 2 24.f even 2 1
320.6.a.w 2 24.h odd 2 1
360.6.a.l 2 1.a even 1 1 trivial
400.6.a.q 2 60.h even 2 1
400.6.c.l 4 60.l odd 4 2
720.6.a.z 2 4.b odd 2 1

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$-1$$
$$5$$ $$1$$

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{6}^{\mathrm{new}}(\Gamma_0(360))$$:

 $$T_{7}^{2} - 52 T_{7} - 3968$$ $$T_{11}^{2} + 560 T_{11} + 59824$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ 1
$5$ $$( 1 + 25 T )^{2}$$
$7$ $$1 - 52 T + 29646 T^{2} - 873964 T^{3} + 282475249 T^{4}$$
$11$ $$1 + 560 T + 381926 T^{2} + 90188560 T^{3} + 25937424601 T^{4}$$
$13$ $$1 - 1388 T + 1149918 T^{2} - 515354684 T^{3} + 137858491849 T^{4}$$
$17$ $$1 + 148 T - 795706 T^{2} + 210138836 T^{3} + 2015993900449 T^{4}$$
$19$ $$1 + 1000 T + 4533462 T^{2} + 2476099000 T^{3} + 6131066257801 T^{4}$$
$23$ $$1 - 2452 T + 6569198 T^{2} - 15781913036 T^{3} + 41426511213649 T^{4}$$
$29$ $$1 + 1340 T - 8758306 T^{2} + 27484939660 T^{3} + 420707233300201 T^{4}$$
$31$ $$1 + 2248 T + 57017022 T^{2} + 64358331448 T^{3} + 819628286980801 T^{4}$$
$37$ $$1 + 5940 T + 123434318 T^{2} + 411903104580 T^{3} + 4808584372417849 T^{4}$$
$41$ $$1 + 23076 T + 352280470 T^{2} + 2673497694276 T^{3} + 13422659310152401 T^{4}$$
$43$ $$1 - 17684 T + 312898614 T^{2} - 2599697306012 T^{3} + 21611482313284249 T^{4}$$
$47$ $$1 - 2908 T + 56660030 T^{2} - 666935280356 T^{3} + 52599132235830049 T^{4}$$
$53$ $$1 - 5412 T + 693247822 T^{2} - 2263274008116 T^{3} + 174887470365513049 T^{4}$$
$59$ $$1 + 62584 T + 2277965606 T^{2} + 44742822328616 T^{3} + 511116753300641401 T^{4}$$
$61$ $$1 - 14108 T + 1110042462 T^{2} - 11915564614508 T^{3} + 713342911662882601 T^{4}$$
$67$ $$1 + 85412 T + 4371910566 T^{2} + 115316885639084 T^{3} + 1822837804551761449 T^{4}$$
$71$ $$1 + 47208 T + 4011779662 T^{2} + 85174059202008 T^{3} + 3255243551009881201 T^{4}$$
$73$ $$1 + 67452 T + 4400780438 T^{2} + 139832825091036 T^{3} + 4297625829703557649 T^{4}$$
$79$ $$1 + 65904 T + 3994274078 T^{2} + 202790324919696 T^{3} + 9468276082626847201 T^{4}$$
$83$ $$1 + 108724 T + 10572459494 T^{2} + 428268254869532 T^{3} + 15516041187205853449 T^{4}$$
$89$ $$1 - 55020 T + 10818978262 T^{2} - 307234950883980 T^{3} + 31181719929966183601 T^{4}$$
$97$ $$1 - 147668 T + 11612429670 T^{2} - 1268075361070676 T^{3} + 73742412689492826049 T^{4}$$