Properties

Label 360.6.a.f
Level $360$
Weight $6$
Character orbit 360.a
Self dual yes
Analytic conductor $57.738$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 360 = 2^{3} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 360.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(57.7381751327\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 40)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + 25q^{5} - 62q^{7} + O(q^{10}) \) \( q + 25q^{5} - 62q^{7} + 144q^{11} - 654q^{13} + 1190q^{17} + 556q^{19} - 2182q^{23} + 625q^{25} + 1578q^{29} + 9660q^{31} - 1550q^{35} - 3534q^{37} - 7462q^{41} - 7114q^{43} + 28294q^{47} - 12963q^{49} + 13046q^{53} + 3600q^{55} + 37092q^{59} + 39570q^{61} - 16350q^{65} - 56734q^{67} - 45588q^{71} + 11842q^{73} - 8928q^{77} + 94216q^{79} + 31482q^{83} + 29750q^{85} + 94054q^{89} + 40548q^{91} + 13900q^{95} + 23714q^{97} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 0 0 25.0000 0 −62.0000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(5\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 360.6.a.f 1
3.b odd 2 1 40.6.a.c 1
4.b odd 2 1 720.6.a.t 1
12.b even 2 1 80.6.a.d 1
15.d odd 2 1 200.6.a.b 1
15.e even 4 2 200.6.c.d 2
24.f even 2 1 320.6.a.h 1
24.h odd 2 1 320.6.a.i 1
60.h even 2 1 400.6.a.h 1
60.l odd 4 2 400.6.c.k 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
40.6.a.c 1 3.b odd 2 1
80.6.a.d 1 12.b even 2 1
200.6.a.b 1 15.d odd 2 1
200.6.c.d 2 15.e even 4 2
320.6.a.h 1 24.f even 2 1
320.6.a.i 1 24.h odd 2 1
360.6.a.f 1 1.a even 1 1 trivial
400.6.a.h 1 60.h even 2 1
400.6.c.k 2 60.l odd 4 2
720.6.a.t 1 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(360))\):

\( T_{7} + 62 \)
\( T_{11} - 144 \)