Properties

Label 360.4.f.c
Level $360$
Weight $4$
Character orbit 360.f
Analytic conductor $21.241$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [360,4,Mod(289,360)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(360, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("360.289");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 360 = 2^{3} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 360.f (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.2406876021\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (5 i + 10) q^{5} + 10 i q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q + (5 i + 10) q^{5} + 10 i q^{7} + 46 q^{11} + 34 i q^{13} - 66 i q^{17} - 104 q^{19} + 164 i q^{23} + (100 i + 75) q^{25} + 224 q^{29} - 72 q^{31} + (100 i - 50) q^{35} - 22 i q^{37} - 194 q^{41} - 108 i q^{43} + 480 i q^{47} + 243 q^{49} + 286 i q^{53} + (230 i + 460) q^{55} + 426 q^{59} + 698 q^{61} + (340 i - 170) q^{65} + 328 i q^{67} - 188 q^{71} + 740 i q^{73} + 460 i q^{77} - 1168 q^{79} + 412 i q^{83} + ( - 660 i + 330) q^{85} + 1206 q^{89} - 340 q^{91} + ( - 520 i - 1040) q^{95} - 1384 i q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 20 q^{5}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 20 q^{5} + 92 q^{11} - 208 q^{19} + 150 q^{25} + 448 q^{29} - 144 q^{31} - 100 q^{35} - 388 q^{41} + 486 q^{49} + 920 q^{55} + 852 q^{59} + 1396 q^{61} - 340 q^{65} - 376 q^{71} - 2336 q^{79} + 660 q^{85} + 2412 q^{89} - 680 q^{91} - 2080 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/360\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(217\) \(271\) \(281\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
289.1
1.00000i
1.00000i
0 0 0 10.0000 5.00000i 0 10.0000i 0 0 0
289.2 0 0 0 10.0000 + 5.00000i 0 10.0000i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 360.4.f.c 2
3.b odd 2 1 120.4.f.a 2
4.b odd 2 1 720.4.f.g 2
5.b even 2 1 inner 360.4.f.c 2
5.c odd 4 1 1800.4.a.j 1
5.c odd 4 1 1800.4.a.y 1
12.b even 2 1 240.4.f.b 2
15.d odd 2 1 120.4.f.a 2
15.e even 4 1 600.4.a.b 1
15.e even 4 1 600.4.a.o 1
20.d odd 2 1 720.4.f.g 2
24.f even 2 1 960.4.f.g 2
24.h odd 2 1 960.4.f.l 2
60.h even 2 1 240.4.f.b 2
60.l odd 4 1 1200.4.a.f 1
60.l odd 4 1 1200.4.a.bh 1
120.i odd 2 1 960.4.f.l 2
120.m even 2 1 960.4.f.g 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
120.4.f.a 2 3.b odd 2 1
120.4.f.a 2 15.d odd 2 1
240.4.f.b 2 12.b even 2 1
240.4.f.b 2 60.h even 2 1
360.4.f.c 2 1.a even 1 1 trivial
360.4.f.c 2 5.b even 2 1 inner
600.4.a.b 1 15.e even 4 1
600.4.a.o 1 15.e even 4 1
720.4.f.g 2 4.b odd 2 1
720.4.f.g 2 20.d odd 2 1
960.4.f.g 2 24.f even 2 1
960.4.f.g 2 120.m even 2 1
960.4.f.l 2 24.h odd 2 1
960.4.f.l 2 120.i odd 2 1
1200.4.a.f 1 60.l odd 4 1
1200.4.a.bh 1 60.l odd 4 1
1800.4.a.j 1 5.c odd 4 1
1800.4.a.y 1 5.c odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(360, [\chi])\):

\( T_{7}^{2} + 100 \) Copy content Toggle raw display
\( T_{11} - 46 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 20T + 125 \) Copy content Toggle raw display
$7$ \( T^{2} + 100 \) Copy content Toggle raw display
$11$ \( (T - 46)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 1156 \) Copy content Toggle raw display
$17$ \( T^{2} + 4356 \) Copy content Toggle raw display
$19$ \( (T + 104)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 26896 \) Copy content Toggle raw display
$29$ \( (T - 224)^{2} \) Copy content Toggle raw display
$31$ \( (T + 72)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 484 \) Copy content Toggle raw display
$41$ \( (T + 194)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 11664 \) Copy content Toggle raw display
$47$ \( T^{2} + 230400 \) Copy content Toggle raw display
$53$ \( T^{2} + 81796 \) Copy content Toggle raw display
$59$ \( (T - 426)^{2} \) Copy content Toggle raw display
$61$ \( (T - 698)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 107584 \) Copy content Toggle raw display
$71$ \( (T + 188)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 547600 \) Copy content Toggle raw display
$79$ \( (T + 1168)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 169744 \) Copy content Toggle raw display
$89$ \( (T - 1206)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 1915456 \) Copy content Toggle raw display
show more
show less