Properties

Label 360.4.a.l.1.1
Level $360$
Weight $4$
Character 360.1
Self dual yes
Analytic conductor $21.241$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [360,4,Mod(1,360)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(360, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("360.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 360 = 2^{3} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 360.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(21.2406876021\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 120)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 360.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.00000 q^{5} +4.00000 q^{7} +O(q^{10})\) \(q+5.00000 q^{5} +4.00000 q^{7} -72.0000 q^{11} -6.00000 q^{13} -38.0000 q^{17} +52.0000 q^{19} -152.000 q^{23} +25.0000 q^{25} +78.0000 q^{29} +120.000 q^{31} +20.0000 q^{35} -150.000 q^{37} -362.000 q^{41} -484.000 q^{43} -280.000 q^{47} -327.000 q^{49} +670.000 q^{53} -360.000 q^{55} -696.000 q^{59} +222.000 q^{61} -30.0000 q^{65} -4.00000 q^{67} -96.0000 q^{71} +178.000 q^{73} -288.000 q^{77} -632.000 q^{79} +612.000 q^{83} -190.000 q^{85} -994.000 q^{89} -24.0000 q^{91} +260.000 q^{95} +1634.00 q^{97} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 5.00000 0.447214
\(6\) 0 0
\(7\) 4.00000 0.215980 0.107990 0.994152i \(-0.465559\pi\)
0.107990 + 0.994152i \(0.465559\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −72.0000 −1.97353 −0.986764 0.162160i \(-0.948154\pi\)
−0.986764 + 0.162160i \(0.948154\pi\)
\(12\) 0 0
\(13\) −6.00000 −0.128008 −0.0640039 0.997950i \(-0.520387\pi\)
−0.0640039 + 0.997950i \(0.520387\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −38.0000 −0.542138 −0.271069 0.962560i \(-0.587377\pi\)
−0.271069 + 0.962560i \(0.587377\pi\)
\(18\) 0 0
\(19\) 52.0000 0.627875 0.313937 0.949444i \(-0.398352\pi\)
0.313937 + 0.949444i \(0.398352\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −152.000 −1.37801 −0.689004 0.724757i \(-0.741952\pi\)
−0.689004 + 0.724757i \(0.741952\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 78.0000 0.499456 0.249728 0.968316i \(-0.419659\pi\)
0.249728 + 0.968316i \(0.419659\pi\)
\(30\) 0 0
\(31\) 120.000 0.695246 0.347623 0.937634i \(-0.386989\pi\)
0.347623 + 0.937634i \(0.386989\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 20.0000 0.0965891
\(36\) 0 0
\(37\) −150.000 −0.666482 −0.333241 0.942842i \(-0.608142\pi\)
−0.333241 + 0.942842i \(0.608142\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −362.000 −1.37890 −0.689450 0.724333i \(-0.742148\pi\)
−0.689450 + 0.724333i \(0.742148\pi\)
\(42\) 0 0
\(43\) −484.000 −1.71650 −0.858248 0.513236i \(-0.828447\pi\)
−0.858248 + 0.513236i \(0.828447\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −280.000 −0.868983 −0.434491 0.900676i \(-0.643072\pi\)
−0.434491 + 0.900676i \(0.643072\pi\)
\(48\) 0 0
\(49\) −327.000 −0.953353
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 670.000 1.73644 0.868222 0.496175i \(-0.165263\pi\)
0.868222 + 0.496175i \(0.165263\pi\)
\(54\) 0 0
\(55\) −360.000 −0.882589
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −696.000 −1.53579 −0.767894 0.640577i \(-0.778695\pi\)
−0.767894 + 0.640577i \(0.778695\pi\)
\(60\) 0 0
\(61\) 222.000 0.465970 0.232985 0.972480i \(-0.425151\pi\)
0.232985 + 0.972480i \(0.425151\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −30.0000 −0.0572468
\(66\) 0 0
\(67\) −4.00000 −0.00729370 −0.00364685 0.999993i \(-0.501161\pi\)
−0.00364685 + 0.999993i \(0.501161\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −96.0000 −0.160466 −0.0802331 0.996776i \(-0.525566\pi\)
−0.0802331 + 0.996776i \(0.525566\pi\)
\(72\) 0 0
\(73\) 178.000 0.285388 0.142694 0.989767i \(-0.454424\pi\)
0.142694 + 0.989767i \(0.454424\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −288.000 −0.426242
\(78\) 0 0
\(79\) −632.000 −0.900070 −0.450035 0.893011i \(-0.648589\pi\)
−0.450035 + 0.893011i \(0.648589\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 612.000 0.809346 0.404673 0.914461i \(-0.367385\pi\)
0.404673 + 0.914461i \(0.367385\pi\)
\(84\) 0 0
\(85\) −190.000 −0.242452
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −994.000 −1.18386 −0.591931 0.805988i \(-0.701634\pi\)
−0.591931 + 0.805988i \(0.701634\pi\)
\(90\) 0 0
\(91\) −24.0000 −0.0276471
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 260.000 0.280794
\(96\) 0 0
\(97\) 1634.00 1.71039 0.855194 0.518309i \(-0.173438\pi\)
0.855194 + 0.518309i \(0.173438\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −890.000 −0.876815 −0.438407 0.898776i \(-0.644457\pi\)
−0.438407 + 0.898776i \(0.644457\pi\)
\(102\) 0 0
\(103\) −524.000 −0.501274 −0.250637 0.968081i \(-0.580640\pi\)
−0.250637 + 0.968081i \(0.580640\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −932.000 −0.842055 −0.421027 0.907048i \(-0.638330\pi\)
−0.421027 + 0.907048i \(0.638330\pi\)
\(108\) 0 0
\(109\) 446.000 0.391918 0.195959 0.980612i \(-0.437218\pi\)
0.195959 + 0.980612i \(0.437218\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 786.000 0.654342 0.327171 0.944965i \(-0.393905\pi\)
0.327171 + 0.944965i \(0.393905\pi\)
\(114\) 0 0
\(115\) −760.000 −0.616264
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −152.000 −0.117091
\(120\) 0 0
\(121\) 3853.00 2.89482
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) 716.000 0.500273 0.250137 0.968211i \(-0.419524\pi\)
0.250137 + 0.968211i \(0.419524\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 808.000 0.538895 0.269448 0.963015i \(-0.413159\pi\)
0.269448 + 0.963015i \(0.413159\pi\)
\(132\) 0 0
\(133\) 208.000 0.135608
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1770.00 1.10381 0.551903 0.833909i \(-0.313902\pi\)
0.551903 + 0.833909i \(0.313902\pi\)
\(138\) 0 0
\(139\) −924.000 −0.563832 −0.281916 0.959439i \(-0.590970\pi\)
−0.281916 + 0.959439i \(0.590970\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 432.000 0.252627
\(144\) 0 0
\(145\) 390.000 0.223364
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 3198.00 1.75832 0.879162 0.476522i \(-0.158103\pi\)
0.879162 + 0.476522i \(0.158103\pi\)
\(150\) 0 0
\(151\) −3384.00 −1.82375 −0.911874 0.410470i \(-0.865365\pi\)
−0.911874 + 0.410470i \(0.865365\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 600.000 0.310924
\(156\) 0 0
\(157\) −3302.00 −1.67852 −0.839262 0.543727i \(-0.817013\pi\)
−0.839262 + 0.543727i \(0.817013\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −608.000 −0.297622
\(162\) 0 0
\(163\) 2252.00 1.08215 0.541074 0.840975i \(-0.318018\pi\)
0.541074 + 0.840975i \(0.318018\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 184.000 0.0852596 0.0426298 0.999091i \(-0.486426\pi\)
0.0426298 + 0.999091i \(0.486426\pi\)
\(168\) 0 0
\(169\) −2161.00 −0.983614
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2646.00 1.16284 0.581421 0.813603i \(-0.302497\pi\)
0.581421 + 0.813603i \(0.302497\pi\)
\(174\) 0 0
\(175\) 100.000 0.0431959
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 608.000 0.253877 0.126939 0.991911i \(-0.459485\pi\)
0.126939 + 0.991911i \(0.459485\pi\)
\(180\) 0 0
\(181\) 2246.00 0.922342 0.461171 0.887311i \(-0.347430\pi\)
0.461171 + 0.887311i \(0.347430\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −750.000 −0.298060
\(186\) 0 0
\(187\) 2736.00 1.06993
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 3848.00 1.45776 0.728878 0.684643i \(-0.240042\pi\)
0.728878 + 0.684643i \(0.240042\pi\)
\(192\) 0 0
\(193\) 2058.00 0.767555 0.383777 0.923426i \(-0.374623\pi\)
0.383777 + 0.923426i \(0.374623\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 3838.00 1.38805 0.694026 0.719950i \(-0.255835\pi\)
0.694026 + 0.719950i \(0.255835\pi\)
\(198\) 0 0
\(199\) −1992.00 −0.709594 −0.354797 0.934943i \(-0.615450\pi\)
−0.354797 + 0.934943i \(0.615450\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 312.000 0.107872
\(204\) 0 0
\(205\) −1810.00 −0.616663
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −3744.00 −1.23913
\(210\) 0 0
\(211\) 4764.00 1.55435 0.777174 0.629286i \(-0.216653\pi\)
0.777174 + 0.629286i \(0.216653\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −2420.00 −0.767640
\(216\) 0 0
\(217\) 480.000 0.150159
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 228.000 0.0693979
\(222\) 0 0
\(223\) 4092.00 1.22879 0.614396 0.788998i \(-0.289400\pi\)
0.614396 + 0.788998i \(0.289400\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −468.000 −0.136838 −0.0684191 0.997657i \(-0.521795\pi\)
−0.0684191 + 0.997657i \(0.521795\pi\)
\(228\) 0 0
\(229\) −5586.00 −1.61194 −0.805968 0.591959i \(-0.798355\pi\)
−0.805968 + 0.591959i \(0.798355\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1058.00 0.297476 0.148738 0.988877i \(-0.452479\pi\)
0.148738 + 0.988877i \(0.452479\pi\)
\(234\) 0 0
\(235\) −1400.00 −0.388621
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −6840.00 −1.85123 −0.925613 0.378472i \(-0.876450\pi\)
−0.925613 + 0.378472i \(0.876450\pi\)
\(240\) 0 0
\(241\) −6430.00 −1.71864 −0.859321 0.511437i \(-0.829113\pi\)
−0.859321 + 0.511437i \(0.829113\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1635.00 −0.426352
\(246\) 0 0
\(247\) −312.000 −0.0803728
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 6352.00 1.59735 0.798675 0.601763i \(-0.205535\pi\)
0.798675 + 0.601763i \(0.205535\pi\)
\(252\) 0 0
\(253\) 10944.0 2.71954
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −1422.00 −0.345144 −0.172572 0.984997i \(-0.555208\pi\)
−0.172572 + 0.984997i \(0.555208\pi\)
\(258\) 0 0
\(259\) −600.000 −0.143947
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −7224.00 −1.69373 −0.846865 0.531808i \(-0.821513\pi\)
−0.846865 + 0.531808i \(0.821513\pi\)
\(264\) 0 0
\(265\) 3350.00 0.776562
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −3186.00 −0.722133 −0.361067 0.932540i \(-0.617587\pi\)
−0.361067 + 0.932540i \(0.617587\pi\)
\(270\) 0 0
\(271\) −256.000 −0.0573834 −0.0286917 0.999588i \(-0.509134\pi\)
−0.0286917 + 0.999588i \(0.509134\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1800.00 −0.394706
\(276\) 0 0
\(277\) −5942.00 −1.28888 −0.644441 0.764654i \(-0.722910\pi\)
−0.644441 + 0.764654i \(0.722910\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −3202.00 −0.679770 −0.339885 0.940467i \(-0.610388\pi\)
−0.339885 + 0.940467i \(0.610388\pi\)
\(282\) 0 0
\(283\) 3940.00 0.827593 0.413796 0.910370i \(-0.364203\pi\)
0.413796 + 0.910370i \(0.364203\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −1448.00 −0.297814
\(288\) 0 0
\(289\) −3469.00 −0.706086
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −1826.00 −0.364082 −0.182041 0.983291i \(-0.558270\pi\)
−0.182041 + 0.983291i \(0.558270\pi\)
\(294\) 0 0
\(295\) −3480.00 −0.686825
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 912.000 0.176396
\(300\) 0 0
\(301\) −1936.00 −0.370728
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1110.00 0.208388
\(306\) 0 0
\(307\) 6580.00 1.22326 0.611629 0.791144i \(-0.290514\pi\)
0.611629 + 0.791144i \(0.290514\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 5728.00 1.04439 0.522195 0.852826i \(-0.325113\pi\)
0.522195 + 0.852826i \(0.325113\pi\)
\(312\) 0 0
\(313\) −1742.00 −0.314580 −0.157290 0.987552i \(-0.550276\pi\)
−0.157290 + 0.987552i \(0.550276\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −8746.00 −1.54960 −0.774802 0.632204i \(-0.782150\pi\)
−0.774802 + 0.632204i \(0.782150\pi\)
\(318\) 0 0
\(319\) −5616.00 −0.985692
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −1976.00 −0.340395
\(324\) 0 0
\(325\) −150.000 −0.0256015
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −1120.00 −0.187683
\(330\) 0 0
\(331\) −2564.00 −0.425771 −0.212885 0.977077i \(-0.568286\pi\)
−0.212885 + 0.977077i \(0.568286\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −20.0000 −0.00326184
\(336\) 0 0
\(337\) −4166.00 −0.673402 −0.336701 0.941612i \(-0.609311\pi\)
−0.336701 + 0.941612i \(0.609311\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −8640.00 −1.37209
\(342\) 0 0
\(343\) −2680.00 −0.421885
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 9444.00 1.46104 0.730519 0.682892i \(-0.239278\pi\)
0.730519 + 0.682892i \(0.239278\pi\)
\(348\) 0 0
\(349\) −9218.00 −1.41383 −0.706917 0.707296i \(-0.749915\pi\)
−0.706917 + 0.707296i \(0.749915\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 4698.00 0.708355 0.354177 0.935178i \(-0.384761\pi\)
0.354177 + 0.935178i \(0.384761\pi\)
\(354\) 0 0
\(355\) −480.000 −0.0717627
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 6056.00 0.890316 0.445158 0.895452i \(-0.353148\pi\)
0.445158 + 0.895452i \(0.353148\pi\)
\(360\) 0 0
\(361\) −4155.00 −0.605773
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 890.000 0.127629
\(366\) 0 0
\(367\) −8228.00 −1.17029 −0.585147 0.810927i \(-0.698963\pi\)
−0.585147 + 0.810927i \(0.698963\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 2680.00 0.375037
\(372\) 0 0
\(373\) 5954.00 0.826505 0.413253 0.910616i \(-0.364393\pi\)
0.413253 + 0.910616i \(0.364393\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −468.000 −0.0639343
\(378\) 0 0
\(379\) 5284.00 0.716150 0.358075 0.933693i \(-0.383433\pi\)
0.358075 + 0.933693i \(0.383433\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −9832.00 −1.31173 −0.655864 0.754879i \(-0.727695\pi\)
−0.655864 + 0.754879i \(0.727695\pi\)
\(384\) 0 0
\(385\) −1440.00 −0.190621
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 222.000 0.0289353 0.0144677 0.999895i \(-0.495395\pi\)
0.0144677 + 0.999895i \(0.495395\pi\)
\(390\) 0 0
\(391\) 5776.00 0.747071
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −3160.00 −0.402524
\(396\) 0 0
\(397\) 12098.0 1.52942 0.764712 0.644372i \(-0.222881\pi\)
0.764712 + 0.644372i \(0.222881\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 5958.00 0.741966 0.370983 0.928640i \(-0.379021\pi\)
0.370983 + 0.928640i \(0.379021\pi\)
\(402\) 0 0
\(403\) −720.000 −0.0889969
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 10800.0 1.31532
\(408\) 0 0
\(409\) 1930.00 0.233331 0.116665 0.993171i \(-0.462779\pi\)
0.116665 + 0.993171i \(0.462779\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −2784.00 −0.331699
\(414\) 0 0
\(415\) 3060.00 0.361951
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −4744.00 −0.553125 −0.276563 0.960996i \(-0.589195\pi\)
−0.276563 + 0.960996i \(0.589195\pi\)
\(420\) 0 0
\(421\) 1614.00 0.186845 0.0934223 0.995627i \(-0.470219\pi\)
0.0934223 + 0.995627i \(0.470219\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −950.000 −0.108428
\(426\) 0 0
\(427\) 888.000 0.100640
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −9296.00 −1.03892 −0.519458 0.854496i \(-0.673866\pi\)
−0.519458 + 0.854496i \(0.673866\pi\)
\(432\) 0 0
\(433\) −3494.00 −0.387785 −0.193893 0.981023i \(-0.562111\pi\)
−0.193893 + 0.981023i \(0.562111\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −7904.00 −0.865216
\(438\) 0 0
\(439\) −12584.0 −1.36811 −0.684056 0.729429i \(-0.739786\pi\)
−0.684056 + 0.729429i \(0.739786\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 12852.0 1.37837 0.689184 0.724586i \(-0.257969\pi\)
0.689184 + 0.724586i \(0.257969\pi\)
\(444\) 0 0
\(445\) −4970.00 −0.529440
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −14458.0 −1.51963 −0.759816 0.650138i \(-0.774711\pi\)
−0.759816 + 0.650138i \(0.774711\pi\)
\(450\) 0 0
\(451\) 26064.0 2.72130
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −120.000 −0.0123641
\(456\) 0 0
\(457\) −4310.00 −0.441167 −0.220583 0.975368i \(-0.570796\pi\)
−0.220583 + 0.975368i \(0.570796\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −5338.00 −0.539296 −0.269648 0.962959i \(-0.586907\pi\)
−0.269648 + 0.962959i \(0.586907\pi\)
\(462\) 0 0
\(463\) 1156.00 0.116034 0.0580171 0.998316i \(-0.481522\pi\)
0.0580171 + 0.998316i \(0.481522\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −5948.00 −0.589380 −0.294690 0.955593i \(-0.595216\pi\)
−0.294690 + 0.955593i \(0.595216\pi\)
\(468\) 0 0
\(469\) −16.0000 −0.00157529
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 34848.0 3.38755
\(474\) 0 0
\(475\) 1300.00 0.125575
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −6888.00 −0.657037 −0.328519 0.944498i \(-0.606549\pi\)
−0.328519 + 0.944498i \(0.606549\pi\)
\(480\) 0 0
\(481\) 900.000 0.0853149
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 8170.00 0.764908
\(486\) 0 0
\(487\) 2892.00 0.269095 0.134547 0.990907i \(-0.457042\pi\)
0.134547 + 0.990907i \(0.457042\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −4096.00 −0.376476 −0.188238 0.982123i \(-0.560278\pi\)
−0.188238 + 0.982123i \(0.560278\pi\)
\(492\) 0 0
\(493\) −2964.00 −0.270775
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −384.000 −0.0346575
\(498\) 0 0
\(499\) 11060.0 0.992212 0.496106 0.868262i \(-0.334763\pi\)
0.496106 + 0.868262i \(0.334763\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 9648.00 0.855235 0.427617 0.903960i \(-0.359353\pi\)
0.427617 + 0.903960i \(0.359353\pi\)
\(504\) 0 0
\(505\) −4450.00 −0.392124
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 10062.0 0.876209 0.438104 0.898924i \(-0.355650\pi\)
0.438104 + 0.898924i \(0.355650\pi\)
\(510\) 0 0
\(511\) 712.000 0.0616380
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −2620.00 −0.224177
\(516\) 0 0
\(517\) 20160.0 1.71496
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 7966.00 0.669859 0.334930 0.942243i \(-0.391287\pi\)
0.334930 + 0.942243i \(0.391287\pi\)
\(522\) 0 0
\(523\) 7668.00 0.641106 0.320553 0.947231i \(-0.396131\pi\)
0.320553 + 0.947231i \(0.396131\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −4560.00 −0.376920
\(528\) 0 0
\(529\) 10937.0 0.898907
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 2172.00 0.176510
\(534\) 0 0
\(535\) −4660.00 −0.376578
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 23544.0 1.88147
\(540\) 0 0
\(541\) 6590.00 0.523708 0.261854 0.965107i \(-0.415666\pi\)
0.261854 + 0.965107i \(0.415666\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 2230.00 0.175271
\(546\) 0 0
\(547\) −4700.00 −0.367381 −0.183691 0.982984i \(-0.558804\pi\)
−0.183691 + 0.982984i \(0.558804\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 4056.00 0.313596
\(552\) 0 0
\(553\) −2528.00 −0.194397
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 15766.0 1.19933 0.599665 0.800251i \(-0.295300\pi\)
0.599665 + 0.800251i \(0.295300\pi\)
\(558\) 0 0
\(559\) 2904.00 0.219725
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −22788.0 −1.70586 −0.852930 0.522025i \(-0.825177\pi\)
−0.852930 + 0.522025i \(0.825177\pi\)
\(564\) 0 0
\(565\) 3930.00 0.292631
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 3358.00 0.247407 0.123704 0.992319i \(-0.460523\pi\)
0.123704 + 0.992319i \(0.460523\pi\)
\(570\) 0 0
\(571\) −11444.0 −0.838733 −0.419366 0.907817i \(-0.637748\pi\)
−0.419366 + 0.907817i \(0.637748\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −3800.00 −0.275602
\(576\) 0 0
\(577\) −10622.0 −0.766377 −0.383189 0.923670i \(-0.625174\pi\)
−0.383189 + 0.923670i \(0.625174\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 2448.00 0.174802
\(582\) 0 0
\(583\) −48240.0 −3.42692
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 6588.00 0.463230 0.231615 0.972808i \(-0.425599\pi\)
0.231615 + 0.972808i \(0.425599\pi\)
\(588\) 0 0
\(589\) 6240.00 0.436528
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 11362.0 0.786815 0.393408 0.919364i \(-0.371296\pi\)
0.393408 + 0.919364i \(0.371296\pi\)
\(594\) 0 0
\(595\) −760.000 −0.0523646
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −1624.00 −0.110776 −0.0553880 0.998465i \(-0.517640\pi\)
−0.0553880 + 0.998465i \(0.517640\pi\)
\(600\) 0 0
\(601\) −14950.0 −1.01468 −0.507340 0.861746i \(-0.669371\pi\)
−0.507340 + 0.861746i \(0.669371\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 19265.0 1.29460
\(606\) 0 0
\(607\) 8244.00 0.551258 0.275629 0.961264i \(-0.411114\pi\)
0.275629 + 0.961264i \(0.411114\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 1680.00 0.111237
\(612\) 0 0
\(613\) 6698.00 0.441321 0.220660 0.975351i \(-0.429179\pi\)
0.220660 + 0.975351i \(0.429179\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −22670.0 −1.47919 −0.739595 0.673053i \(-0.764983\pi\)
−0.739595 + 0.673053i \(0.764983\pi\)
\(618\) 0 0
\(619\) −10060.0 −0.653224 −0.326612 0.945159i \(-0.605907\pi\)
−0.326612 + 0.945159i \(0.605907\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −3976.00 −0.255690
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 5700.00 0.361326
\(630\) 0 0
\(631\) 10240.0 0.646035 0.323017 0.946393i \(-0.395303\pi\)
0.323017 + 0.946393i \(0.395303\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 3580.00 0.223729
\(636\) 0 0
\(637\) 1962.00 0.122037
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −13218.0 −0.814477 −0.407238 0.913322i \(-0.633508\pi\)
−0.407238 + 0.913322i \(0.633508\pi\)
\(642\) 0 0
\(643\) −23412.0 −1.43589 −0.717946 0.696098i \(-0.754918\pi\)
−0.717946 + 0.696098i \(0.754918\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 15264.0 0.927496 0.463748 0.885967i \(-0.346504\pi\)
0.463748 + 0.885967i \(0.346504\pi\)
\(648\) 0 0
\(649\) 50112.0 3.03092
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −1482.00 −0.0888134 −0.0444067 0.999014i \(-0.514140\pi\)
−0.0444067 + 0.999014i \(0.514140\pi\)
\(654\) 0 0
\(655\) 4040.00 0.241001
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 18920.0 1.11839 0.559195 0.829036i \(-0.311110\pi\)
0.559195 + 0.829036i \(0.311110\pi\)
\(660\) 0 0
\(661\) −24218.0 −1.42507 −0.712535 0.701637i \(-0.752453\pi\)
−0.712535 + 0.701637i \(0.752453\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 1040.00 0.0606458
\(666\) 0 0
\(667\) −11856.0 −0.688255
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −15984.0 −0.919606
\(672\) 0 0
\(673\) 890.000 0.0509762 0.0254881 0.999675i \(-0.491886\pi\)
0.0254881 + 0.999675i \(0.491886\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −29250.0 −1.66052 −0.830258 0.557380i \(-0.811807\pi\)
−0.830258 + 0.557380i \(0.811807\pi\)
\(678\) 0 0
\(679\) 6536.00 0.369409
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −14580.0 −0.816820 −0.408410 0.912799i \(-0.633917\pi\)
−0.408410 + 0.912799i \(0.633917\pi\)
\(684\) 0 0
\(685\) 8850.00 0.493637
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −4020.00 −0.222278
\(690\) 0 0
\(691\) 23668.0 1.30300 0.651500 0.758649i \(-0.274140\pi\)
0.651500 + 0.758649i \(0.274140\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −4620.00 −0.252153
\(696\) 0 0
\(697\) 13756.0 0.747555
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −32402.0 −1.74580 −0.872901 0.487898i \(-0.837764\pi\)
−0.872901 + 0.487898i \(0.837764\pi\)
\(702\) 0 0
\(703\) −7800.00 −0.418467
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −3560.00 −0.189374
\(708\) 0 0
\(709\) −30626.0 −1.62226 −0.811131 0.584865i \(-0.801148\pi\)
−0.811131 + 0.584865i \(0.801148\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −18240.0 −0.958055
\(714\) 0 0
\(715\) 2160.00 0.112978
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −13440.0 −0.697117 −0.348559 0.937287i \(-0.613329\pi\)
−0.348559 + 0.937287i \(0.613329\pi\)
\(720\) 0 0
\(721\) −2096.00 −0.108265
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 1950.00 0.0998913
\(726\) 0 0
\(727\) −24820.0 −1.26619 −0.633097 0.774073i \(-0.718217\pi\)
−0.633097 + 0.774073i \(0.718217\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 18392.0 0.930578
\(732\) 0 0
\(733\) 21986.0 1.10787 0.553937 0.832559i \(-0.313125\pi\)
0.553937 + 0.832559i \(0.313125\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 288.000 0.0143943
\(738\) 0 0
\(739\) 4420.00 0.220017 0.110008 0.993931i \(-0.464912\pi\)
0.110008 + 0.993931i \(0.464912\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −34560.0 −1.70644 −0.853219 0.521553i \(-0.825353\pi\)
−0.853219 + 0.521553i \(0.825353\pi\)
\(744\) 0 0
\(745\) 15990.0 0.786347
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −3728.00 −0.181867
\(750\) 0 0
\(751\) −24792.0 −1.20462 −0.602312 0.798261i \(-0.705754\pi\)
−0.602312 + 0.798261i \(0.705754\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −16920.0 −0.815605
\(756\) 0 0
\(757\) −2166.00 −0.103996 −0.0519978 0.998647i \(-0.516559\pi\)
−0.0519978 + 0.998647i \(0.516559\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 10622.0 0.505975 0.252988 0.967470i \(-0.418587\pi\)
0.252988 + 0.967470i \(0.418587\pi\)
\(762\) 0 0
\(763\) 1784.00 0.0846463
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 4176.00 0.196593
\(768\) 0 0
\(769\) 29826.0 1.39864 0.699319 0.714809i \(-0.253487\pi\)
0.699319 + 0.714809i \(0.253487\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −6386.00 −0.297139 −0.148570 0.988902i \(-0.547467\pi\)
−0.148570 + 0.988902i \(0.547467\pi\)
\(774\) 0 0
\(775\) 3000.00 0.139049
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −18824.0 −0.865776
\(780\) 0 0
\(781\) 6912.00 0.316685
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −16510.0 −0.750659
\(786\) 0 0
\(787\) 3516.00 0.159253 0.0796263 0.996825i \(-0.474627\pi\)
0.0796263 + 0.996825i \(0.474627\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 3144.00 0.141325
\(792\) 0 0
\(793\) −1332.00 −0.0596478
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 25030.0 1.11243 0.556216 0.831038i \(-0.312253\pi\)
0.556216 + 0.831038i \(0.312253\pi\)
\(798\) 0 0
\(799\) 10640.0 0.471109
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −12816.0 −0.563221
\(804\) 0 0
\(805\) −3040.00 −0.133101
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −7962.00 −0.346019 −0.173009 0.984920i \(-0.555349\pi\)
−0.173009 + 0.984920i \(0.555349\pi\)
\(810\) 0 0
\(811\) −34668.0 −1.50106 −0.750529 0.660837i \(-0.770201\pi\)
−0.750529 + 0.660837i \(0.770201\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 11260.0 0.483952
\(816\) 0 0
\(817\) −25168.0 −1.07774
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −250.000 −0.0106274 −0.00531368 0.999986i \(-0.501691\pi\)
−0.00531368 + 0.999986i \(0.501691\pi\)
\(822\) 0 0
\(823\) −6388.00 −0.270561 −0.135280 0.990807i \(-0.543194\pi\)
−0.135280 + 0.990807i \(0.543194\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −3932.00 −0.165331 −0.0826657 0.996577i \(-0.526343\pi\)
−0.0826657 + 0.996577i \(0.526343\pi\)
\(828\) 0 0
\(829\) −25906.0 −1.08535 −0.542673 0.839944i \(-0.682588\pi\)
−0.542673 + 0.839944i \(0.682588\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 12426.0 0.516849
\(834\) 0 0
\(835\) 920.000 0.0381292
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 9944.00 0.409184 0.204592 0.978847i \(-0.434413\pi\)
0.204592 + 0.978847i \(0.434413\pi\)
\(840\) 0 0
\(841\) −18305.0 −0.750543
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −10805.0 −0.439886
\(846\) 0 0
\(847\) 15412.0 0.625221
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 22800.0 0.918418
\(852\) 0 0
\(853\) −14630.0 −0.587247 −0.293623 0.955921i \(-0.594861\pi\)
−0.293623 + 0.955921i \(0.594861\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −478.000 −0.0190527 −0.00952635 0.999955i \(-0.503032\pi\)
−0.00952635 + 0.999955i \(0.503032\pi\)
\(858\) 0 0
\(859\) 24132.0 0.958525 0.479263 0.877672i \(-0.340904\pi\)
0.479263 + 0.877672i \(0.340904\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −15776.0 −0.622273 −0.311136 0.950365i \(-0.600710\pi\)
−0.311136 + 0.950365i \(0.600710\pi\)
\(864\) 0 0
\(865\) 13230.0 0.520039
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 45504.0 1.77631
\(870\) 0 0
\(871\) 24.0000 0.000933650 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 500.000 0.0193178
\(876\) 0 0
\(877\) −33542.0 −1.29149 −0.645743 0.763555i \(-0.723452\pi\)
−0.645743 + 0.763555i \(0.723452\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −22858.0 −0.874127 −0.437063 0.899431i \(-0.643981\pi\)
−0.437063 + 0.899431i \(0.643981\pi\)
\(882\) 0 0
\(883\) 2764.00 0.105341 0.0526704 0.998612i \(-0.483227\pi\)
0.0526704 + 0.998612i \(0.483227\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −6216.00 −0.235302 −0.117651 0.993055i \(-0.537536\pi\)
−0.117651 + 0.993055i \(0.537536\pi\)
\(888\) 0 0
\(889\) 2864.00 0.108049
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −14560.0 −0.545612
\(894\) 0 0
\(895\) 3040.00 0.113537
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 9360.00 0.347245
\(900\) 0 0
\(901\) −25460.0 −0.941394
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 11230.0 0.412484
\(906\) 0 0
\(907\) −18884.0 −0.691326 −0.345663 0.938359i \(-0.612346\pi\)
−0.345663 + 0.938359i \(0.612346\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 15232.0 0.553961 0.276981 0.960876i \(-0.410666\pi\)
0.276981 + 0.960876i \(0.410666\pi\)
\(912\) 0 0
\(913\) −44064.0 −1.59727
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 3232.00 0.116390
\(918\) 0 0
\(919\) 7744.00 0.277966 0.138983 0.990295i \(-0.455617\pi\)
0.138983 + 0.990295i \(0.455617\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 576.000 0.0205409
\(924\) 0 0
\(925\) −3750.00 −0.133296
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −22266.0 −0.786355 −0.393177 0.919463i \(-0.628624\pi\)
−0.393177 + 0.919463i \(0.628624\pi\)
\(930\) 0 0
\(931\) −17004.0 −0.598586
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 13680.0 0.478485
\(936\) 0 0
\(937\) 16202.0 0.564884 0.282442 0.959284i \(-0.408856\pi\)
0.282442 + 0.959284i \(0.408856\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 53494.0 1.85319 0.926596 0.376057i \(-0.122720\pi\)
0.926596 + 0.376057i \(0.122720\pi\)
\(942\) 0 0
\(943\) 55024.0 1.90014
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 2332.00 0.0800209 0.0400105 0.999199i \(-0.487261\pi\)
0.0400105 + 0.999199i \(0.487261\pi\)
\(948\) 0 0
\(949\) −1068.00 −0.0365319
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −15414.0 −0.523933 −0.261967 0.965077i \(-0.584371\pi\)
−0.261967 + 0.965077i \(0.584371\pi\)
\(954\) 0 0
\(955\) 19240.0 0.651929
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 7080.00 0.238400
\(960\) 0 0
\(961\) −15391.0 −0.516633
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 10290.0 0.343261
\(966\) 0 0
\(967\) 35012.0 1.16433 0.582167 0.813070i \(-0.302205\pi\)
0.582167 + 0.813070i \(0.302205\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −11360.0 −0.375448 −0.187724 0.982222i \(-0.560111\pi\)
−0.187724 + 0.982222i \(0.560111\pi\)
\(972\) 0 0
\(973\) −3696.00 −0.121776
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 24586.0 0.805093 0.402546 0.915400i \(-0.368125\pi\)
0.402546 + 0.915400i \(0.368125\pi\)
\(978\) 0 0
\(979\) 71568.0 2.33639
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −8832.00 −0.286569 −0.143284 0.989682i \(-0.545766\pi\)
−0.143284 + 0.989682i \(0.545766\pi\)
\(984\) 0 0
\(985\) 19190.0 0.620756
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 73568.0 2.36535
\(990\) 0 0
\(991\) −22912.0 −0.734434 −0.367217 0.930135i \(-0.619689\pi\)
−0.367217 + 0.930135i \(0.619689\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −9960.00 −0.317340
\(996\) 0 0
\(997\) −10974.0 −0.348596 −0.174298 0.984693i \(-0.555766\pi\)
−0.174298 + 0.984693i \(0.555766\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 360.4.a.l.1.1 1
3.2 odd 2 120.4.a.a.1.1 1
4.3 odd 2 720.4.a.v.1.1 1
5.2 odd 4 1800.4.f.a.649.2 2
5.3 odd 4 1800.4.f.a.649.1 2
5.4 even 2 1800.4.a.n.1.1 1
12.11 even 2 240.4.a.h.1.1 1
15.2 even 4 600.4.f.i.49.2 2
15.8 even 4 600.4.f.i.49.1 2
15.14 odd 2 600.4.a.l.1.1 1
24.5 odd 2 960.4.a.bf.1.1 1
24.11 even 2 960.4.a.o.1.1 1
60.23 odd 4 1200.4.f.a.49.2 2
60.47 odd 4 1200.4.f.a.49.1 2
60.59 even 2 1200.4.a.k.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
120.4.a.a.1.1 1 3.2 odd 2
240.4.a.h.1.1 1 12.11 even 2
360.4.a.l.1.1 1 1.1 even 1 trivial
600.4.a.l.1.1 1 15.14 odd 2
600.4.f.i.49.1 2 15.8 even 4
600.4.f.i.49.2 2 15.2 even 4
720.4.a.v.1.1 1 4.3 odd 2
960.4.a.o.1.1 1 24.11 even 2
960.4.a.bf.1.1 1 24.5 odd 2
1200.4.a.k.1.1 1 60.59 even 2
1200.4.f.a.49.1 2 60.47 odd 4
1200.4.f.a.49.2 2 60.23 odd 4
1800.4.a.n.1.1 1 5.4 even 2
1800.4.f.a.649.1 2 5.3 odd 4
1800.4.f.a.649.2 2 5.2 odd 4