Properties

Label 360.4.a.f
Level $360$
Weight $4$
Character orbit 360.a
Self dual yes
Analytic conductor $21.241$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [360,4,Mod(1,360)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(360, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("360.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 360 = 2^{3} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 360.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(21.2406876021\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 40)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 5 q^{5} + 16 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q - 5 q^{5} + 16 q^{7} - 36 q^{11} - 42 q^{13} + 110 q^{17} - 116 q^{19} - 16 q^{23} + 25 q^{25} - 198 q^{29} + 240 q^{31} - 80 q^{35} - 258 q^{37} - 442 q^{41} - 292 q^{43} - 392 q^{47} - 87 q^{49} - 142 q^{53} + 180 q^{55} + 348 q^{59} - 570 q^{61} + 210 q^{65} + 692 q^{67} - 168 q^{71} - 134 q^{73} - 576 q^{77} + 784 q^{79} - 564 q^{83} - 550 q^{85} - 1034 q^{89} - 672 q^{91} + 580 q^{95} - 382 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 0 0 −5.00000 0 16.0000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 360.4.a.f 1
3.b odd 2 1 40.4.a.b 1
4.b odd 2 1 720.4.a.d 1
5.b even 2 1 1800.4.a.h 1
5.c odd 4 2 1800.4.f.d 2
12.b even 2 1 80.4.a.b 1
15.d odd 2 1 200.4.a.d 1
15.e even 4 2 200.4.c.f 2
21.c even 2 1 1960.4.a.e 1
24.f even 2 1 320.4.a.j 1
24.h odd 2 1 320.4.a.e 1
48.i odd 4 2 1280.4.d.d 2
48.k even 4 2 1280.4.d.m 2
60.h even 2 1 400.4.a.p 1
60.l odd 4 2 400.4.c.h 2
120.i odd 2 1 1600.4.a.bk 1
120.m even 2 1 1600.4.a.q 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
40.4.a.b 1 3.b odd 2 1
80.4.a.b 1 12.b even 2 1
200.4.a.d 1 15.d odd 2 1
200.4.c.f 2 15.e even 4 2
320.4.a.e 1 24.h odd 2 1
320.4.a.j 1 24.f even 2 1
360.4.a.f 1 1.a even 1 1 trivial
400.4.a.p 1 60.h even 2 1
400.4.c.h 2 60.l odd 4 2
720.4.a.d 1 4.b odd 2 1
1280.4.d.d 2 48.i odd 4 2
1280.4.d.m 2 48.k even 4 2
1600.4.a.q 1 120.m even 2 1
1600.4.a.bk 1 120.i odd 2 1
1800.4.a.h 1 5.b even 2 1
1800.4.f.d 2 5.c odd 4 2
1960.4.a.e 1 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(360))\):

\( T_{7} - 16 \) Copy content Toggle raw display
\( T_{11} + 36 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T + 5 \) Copy content Toggle raw display
$7$ \( T - 16 \) Copy content Toggle raw display
$11$ \( T + 36 \) Copy content Toggle raw display
$13$ \( T + 42 \) Copy content Toggle raw display
$17$ \( T - 110 \) Copy content Toggle raw display
$19$ \( T + 116 \) Copy content Toggle raw display
$23$ \( T + 16 \) Copy content Toggle raw display
$29$ \( T + 198 \) Copy content Toggle raw display
$31$ \( T - 240 \) Copy content Toggle raw display
$37$ \( T + 258 \) Copy content Toggle raw display
$41$ \( T + 442 \) Copy content Toggle raw display
$43$ \( T + 292 \) Copy content Toggle raw display
$47$ \( T + 392 \) Copy content Toggle raw display
$53$ \( T + 142 \) Copy content Toggle raw display
$59$ \( T - 348 \) Copy content Toggle raw display
$61$ \( T + 570 \) Copy content Toggle raw display
$67$ \( T - 692 \) Copy content Toggle raw display
$71$ \( T + 168 \) Copy content Toggle raw display
$73$ \( T + 134 \) Copy content Toggle raw display
$79$ \( T - 784 \) Copy content Toggle raw display
$83$ \( T + 564 \) Copy content Toggle raw display
$89$ \( T + 1034 \) Copy content Toggle raw display
$97$ \( T + 382 \) Copy content Toggle raw display
show more
show less