Defining parameters
| Level: | \( N \) | \(=\) | \( 360 = 2^{3} \cdot 3^{2} \cdot 5 \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 360.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 15 \) | ||
| Sturm bound: | \(288\) | ||
| Trace bound: | \(11\) | ||
| Distinguishing \(T_p\): | \(7\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(360))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 232 | 15 | 217 |
| Cusp forms | 200 | 15 | 185 |
| Eisenstein series | 32 | 0 | 32 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(3\) | \(5\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | |||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(30\) | \(2\) | \(28\) | \(26\) | \(2\) | \(24\) | \(4\) | \(0\) | \(4\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(28\) | \(1\) | \(27\) | \(24\) | \(1\) | \(23\) | \(4\) | \(0\) | \(4\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(28\) | \(2\) | \(26\) | \(24\) | \(2\) | \(22\) | \(4\) | \(0\) | \(4\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(30\) | \(3\) | \(27\) | \(26\) | \(3\) | \(23\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(28\) | \(1\) | \(27\) | \(24\) | \(1\) | \(23\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(30\) | \(2\) | \(28\) | \(26\) | \(2\) | \(24\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(30\) | \(2\) | \(28\) | \(26\) | \(2\) | \(24\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(28\) | \(2\) | \(26\) | \(24\) | \(2\) | \(22\) | \(4\) | \(0\) | \(4\) | |||
| Plus space | \(+\) | \(120\) | \(9\) | \(111\) | \(104\) | \(9\) | \(95\) | \(16\) | \(0\) | \(16\) | |||||
| Minus space | \(-\) | \(112\) | \(6\) | \(106\) | \(96\) | \(6\) | \(90\) | \(16\) | \(0\) | \(16\) | |||||
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(360))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(360))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(360)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 9}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(12))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(18))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(45))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(60))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(72))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(90))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(120))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(180))\)\(^{\oplus 2}\)