Properties

Label 360.2.t
Level $360$
Weight $2$
Character orbit 360.t
Rep. character $\chi_{360}(127,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $0$
Newform subspaces $0$
Sturm bound $144$
Trace bound $0$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 360 = 2^{3} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 360.t (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 20 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 0 \)
Sturm bound: \(144\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(360, [\chi])\).

Total New Old
Modular forms 176 0 176
Cusp forms 112 0 112
Eisenstein series 64 0 64

Decomposition of \(S_{2}^{\mathrm{old}}(360, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(360, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(180, [\chi])\)\(^{\oplus 2}\)