Properties

 Label 360.2.s.a Level $360$ Weight $2$ Character orbit 360.s Analytic conductor $2.875$ Analytic rank $0$ Dimension $4$ CM no Inner twists $4$

Related objects

Newspace parameters

 Level: $$N$$ $$=$$ $$360 = 2^{3} \cdot 3^{2} \cdot 5$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 360.s (of order $$4$$, degree $$2$$, minimal)

Newform invariants

 Self dual: no Analytic conductor: $$2.87461447277$$ Analytic rank: $$0$$ Dimension: $$4$$ Relative dimension: $$2$$ over $$\Q(i)$$ Coefficient field: $$\Q(\zeta_{8})$$ Defining polynomial: $$x^{4} + 1$$ Coefficient ring: $$\Z[a_1, \ldots, a_{19}]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{8}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( 2 \zeta_{8} - \zeta_{8}^{3} ) q^{5} +O(q^{10})$$ $$q + ( 2 \zeta_{8} - \zeta_{8}^{3} ) q^{5} + ( 4 \zeta_{8} + 4 \zeta_{8}^{3} ) q^{11} + ( 3 - 3 \zeta_{8}^{2} ) q^{13} -4 \zeta_{8}^{2} q^{19} + 4 \zeta_{8} q^{23} + ( 4 + 3 \zeta_{8}^{2} ) q^{25} + ( \zeta_{8} - \zeta_{8}^{3} ) q^{29} -8 q^{31} + ( 7 + 7 \zeta_{8}^{2} ) q^{37} + ( -\zeta_{8} - \zeta_{8}^{3} ) q^{41} + ( 4 - 4 \zeta_{8}^{2} ) q^{43} -4 \zeta_{8}^{3} q^{47} -7 \zeta_{8}^{2} q^{49} -12 \zeta_{8} q^{53} + ( -4 + 12 \zeta_{8}^{2} ) q^{55} + ( -8 \zeta_{8} + 8 \zeta_{8}^{3} ) q^{59} -12 q^{61} + ( 3 \zeta_{8} - 9 \zeta_{8}^{3} ) q^{65} + ( -8 - 8 \zeta_{8}^{2} ) q^{67} + ( 4 \zeta_{8} + 4 \zeta_{8}^{3} ) q^{71} + ( -3 + 3 \zeta_{8}^{2} ) q^{73} + 8 \zeta_{8}^{2} q^{79} -16 \zeta_{8} q^{83} + ( -5 \zeta_{8} + 5 \zeta_{8}^{3} ) q^{89} + ( -4 \zeta_{8} - 8 \zeta_{8}^{3} ) q^{95} + ( 5 + 5 \zeta_{8}^{2} ) q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4q + O(q^{10})$$ $$4q + 12q^{13} + 16q^{25} - 32q^{31} + 28q^{37} + 16q^{43} - 16q^{55} - 48q^{61} - 32q^{67} - 12q^{73} + 20q^{97} + O(q^{100})$$

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/360\mathbb{Z}\right)^\times$$.

 $$n$$ $$181$$ $$217$$ $$271$$ $$281$$ $$\chi(n)$$ $$1$$ $$\zeta_{8}^{2}$$ $$1$$ $$-1$$

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
17.1
 −0.707107 − 0.707107i 0.707107 + 0.707107i −0.707107 + 0.707107i 0.707107 − 0.707107i
0 0 0 −2.12132 0.707107i 0 0 0 0 0
17.2 0 0 0 2.12132 + 0.707107i 0 0 0 0 0
233.1 0 0 0 −2.12132 + 0.707107i 0 0 0 0 0
233.2 0 0 0 2.12132 0.707107i 0 0 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
5.c odd 4 1 inner
15.e even 4 1 inner

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 360.2.s.a 4
3.b odd 2 1 inner 360.2.s.a 4
4.b odd 2 1 720.2.w.c 4
5.b even 2 1 1800.2.s.b 4
5.c odd 4 1 inner 360.2.s.a 4
5.c odd 4 1 1800.2.s.b 4
8.b even 2 1 2880.2.w.e 4
8.d odd 2 1 2880.2.w.f 4
12.b even 2 1 720.2.w.c 4
15.d odd 2 1 1800.2.s.b 4
15.e even 4 1 inner 360.2.s.a 4
15.e even 4 1 1800.2.s.b 4
20.d odd 2 1 3600.2.w.d 4
20.e even 4 1 720.2.w.c 4
20.e even 4 1 3600.2.w.d 4
24.f even 2 1 2880.2.w.f 4
24.h odd 2 1 2880.2.w.e 4
40.i odd 4 1 2880.2.w.e 4
40.k even 4 1 2880.2.w.f 4
60.h even 2 1 3600.2.w.d 4
60.l odd 4 1 720.2.w.c 4
60.l odd 4 1 3600.2.w.d 4
120.q odd 4 1 2880.2.w.f 4
120.w even 4 1 2880.2.w.e 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
360.2.s.a 4 1.a even 1 1 trivial
360.2.s.a 4 3.b odd 2 1 inner
360.2.s.a 4 5.c odd 4 1 inner
360.2.s.a 4 15.e even 4 1 inner
720.2.w.c 4 4.b odd 2 1
720.2.w.c 4 12.b even 2 1
720.2.w.c 4 20.e even 4 1
720.2.w.c 4 60.l odd 4 1
1800.2.s.b 4 5.b even 2 1
1800.2.s.b 4 5.c odd 4 1
1800.2.s.b 4 15.d odd 2 1
1800.2.s.b 4 15.e even 4 1
2880.2.w.e 4 8.b even 2 1
2880.2.w.e 4 24.h odd 2 1
2880.2.w.e 4 40.i odd 4 1
2880.2.w.e 4 120.w even 4 1
2880.2.w.f 4 8.d odd 2 1
2880.2.w.f 4 24.f even 2 1
2880.2.w.f 4 40.k even 4 1
2880.2.w.f 4 120.q odd 4 1
3600.2.w.d 4 20.d odd 2 1
3600.2.w.d 4 20.e even 4 1
3600.2.w.d 4 60.h even 2 1
3600.2.w.d 4 60.l odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{7}$$ acting on $$S_{2}^{\mathrm{new}}(360, [\chi])$$.

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{4}$$
$3$ $$T^{4}$$
$5$ $$25 - 8 T^{2} + T^{4}$$
$7$ $$T^{4}$$
$11$ $$( 32 + T^{2} )^{2}$$
$13$ $$( 18 - 6 T + T^{2} )^{2}$$
$17$ $$T^{4}$$
$19$ $$( 16 + T^{2} )^{2}$$
$23$ $$256 + T^{4}$$
$29$ $$( -2 + T^{2} )^{2}$$
$31$ $$( 8 + T )^{4}$$
$37$ $$( 98 - 14 T + T^{2} )^{2}$$
$41$ $$( 2 + T^{2} )^{2}$$
$43$ $$( 32 - 8 T + T^{2} )^{2}$$
$47$ $$256 + T^{4}$$
$53$ $$20736 + T^{4}$$
$59$ $$( -128 + T^{2} )^{2}$$
$61$ $$( 12 + T )^{4}$$
$67$ $$( 128 + 16 T + T^{2} )^{2}$$
$71$ $$( 32 + T^{2} )^{2}$$
$73$ $$( 18 + 6 T + T^{2} )^{2}$$
$79$ $$( 64 + T^{2} )^{2}$$
$83$ $$65536 + T^{4}$$
$89$ $$( -50 + T^{2} )^{2}$$
$97$ $$( 50 - 10 T + T^{2} )^{2}$$