Properties

Label 360.2.q.d.121.3
Level $360$
Weight $2$
Character 360.121
Analytic conductor $2.875$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [360,2,Mod(121,360)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(360, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("360.121");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 360 = 2^{3} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 360.q (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.87461447277\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.954288.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 2x^{4} + 3x^{3} - 6x^{2} - 9x + 27 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 121.3
Root \(-1.62241 + 0.606458i\) of defining polynomial
Character \(\chi\) \(=\) 360.121
Dual form 360.2.q.d.241.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.62241 - 0.606458i) q^{3} +(-0.500000 + 0.866025i) q^{5} +(2.62241 + 4.54214i) q^{7} +(2.26442 - 1.96784i) q^{9} +(-1.33641 - 2.31473i) q^{11} +(-1.90841 + 3.30545i) q^{13} +(-0.285997 + 1.70828i) q^{15} +3.52884 q^{17} -4.67282 q^{19} +(7.00924 + 5.77883i) q^{21} +(2.47842 - 4.29275i) q^{23} +(-0.500000 - 0.866025i) q^{25} +(2.48040 - 4.56592i) q^{27} +(0.928007 + 1.60735i) q^{29} +(4.33641 - 7.51089i) q^{31} +(-3.57199 - 2.94497i) q^{33} -5.24482 q^{35} -2.67282 q^{37} +(-1.09159 + 6.52016i) q^{39} +(1.83641 - 3.18076i) q^{41} +(-1.76442 - 3.05606i) q^{43} +(0.571993 + 2.94497i) q^{45} +(-4.63164 - 8.02224i) q^{47} +(-10.2541 + 17.7605i) q^{49} +(5.72522 - 2.14009i) q^{51} -2.85601 q^{53} +2.67282 q^{55} +(-7.58123 + 2.83387i) q^{57} +(-2.10083 + 3.63875i) q^{59} +(3.98040 + 6.89425i) q^{61} +(14.8765 + 5.12483i) q^{63} +(-1.90841 - 3.30545i) q^{65} +(0.429983 - 0.744753i) q^{67} +(1.41764 - 8.46766i) q^{69} -15.1625 q^{71} +6.28797 q^{73} +(-1.33641 - 1.10182i) q^{75} +(7.00924 - 12.1404i) q^{77} +(-2.81681 - 4.87886i) q^{79} +(1.25518 - 8.91204i) q^{81} +(1.94958 + 3.37678i) q^{83} +(-1.76442 + 3.05606i) q^{85} +(2.48040 + 2.04499i) q^{87} -11.0000 q^{89} -20.0185 q^{91} +(2.48040 - 14.8156i) q^{93} +(2.33641 - 4.04678i) q^{95} +(1.91764 + 3.32145i) q^{97} +(-7.58123 - 2.61168i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - q^{3} - 3 q^{5} + 5 q^{7} + 5 q^{9} + 2 q^{11} - q^{15} + 4 q^{17} - 8 q^{19} + 12 q^{21} + 7 q^{23} - 3 q^{25} + 2 q^{27} + 7 q^{29} + 16 q^{31} - 20 q^{33} - 10 q^{35} + 4 q^{37} - 18 q^{39} + q^{41}+ \cdots - 14 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/360\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(217\) \(271\) \(281\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.62241 0.606458i 0.936698 0.350138i
\(4\) 0 0
\(5\) −0.500000 + 0.866025i −0.223607 + 0.387298i
\(6\) 0 0
\(7\) 2.62241 + 4.54214i 0.991177 + 1.71677i 0.610374 + 0.792113i \(0.291019\pi\)
0.380803 + 0.924656i \(0.375648\pi\)
\(8\) 0 0
\(9\) 2.26442 1.96784i 0.754806 0.655948i
\(10\) 0 0
\(11\) −1.33641 2.31473i −0.402943 0.697918i 0.591136 0.806572i \(-0.298679\pi\)
−0.994080 + 0.108653i \(0.965346\pi\)
\(12\) 0 0
\(13\) −1.90841 + 3.30545i −0.529296 + 0.916768i 0.470120 + 0.882603i \(0.344211\pi\)
−0.999416 + 0.0341656i \(0.989123\pi\)
\(14\) 0 0
\(15\) −0.285997 + 1.70828i −0.0738440 + 0.441075i
\(16\) 0 0
\(17\) 3.52884 0.855869 0.427934 0.903810i \(-0.359241\pi\)
0.427934 + 0.903810i \(0.359241\pi\)
\(18\) 0 0
\(19\) −4.67282 −1.07202 −0.536010 0.844212i \(-0.680069\pi\)
−0.536010 + 0.844212i \(0.680069\pi\)
\(20\) 0 0
\(21\) 7.00924 + 5.77883i 1.52954 + 1.26105i
\(22\) 0 0
\(23\) 2.47842 4.29275i 0.516787 0.895101i −0.483023 0.875608i \(-0.660461\pi\)
0.999810 0.0194933i \(-0.00620531\pi\)
\(24\) 0 0
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 0 0
\(27\) 2.48040 4.56592i 0.477353 0.878712i
\(28\) 0 0
\(29\) 0.928007 + 1.60735i 0.172327 + 0.298478i 0.939233 0.343281i \(-0.111538\pi\)
−0.766906 + 0.641759i \(0.778205\pi\)
\(30\) 0 0
\(31\) 4.33641 7.51089i 0.778843 1.34899i −0.153767 0.988107i \(-0.549140\pi\)
0.932609 0.360888i \(-0.117526\pi\)
\(32\) 0 0
\(33\) −3.57199 2.94497i −0.621804 0.512653i
\(34\) 0 0
\(35\) −5.24482 −0.886536
\(36\) 0 0
\(37\) −2.67282 −0.439410 −0.219705 0.975566i \(-0.570509\pi\)
−0.219705 + 0.975566i \(0.570509\pi\)
\(38\) 0 0
\(39\) −1.09159 + 6.52016i −0.174795 + 1.04406i
\(40\) 0 0
\(41\) 1.83641 3.18076i 0.286799 0.496751i −0.686245 0.727371i \(-0.740742\pi\)
0.973044 + 0.230620i \(0.0740754\pi\)
\(42\) 0 0
\(43\) −1.76442 3.05606i −0.269071 0.466045i 0.699551 0.714583i \(-0.253383\pi\)
−0.968622 + 0.248538i \(0.920050\pi\)
\(44\) 0 0
\(45\) 0.571993 + 2.94497i 0.0852677 + 0.439010i
\(46\) 0 0
\(47\) −4.63164 8.02224i −0.675595 1.17016i −0.976295 0.216446i \(-0.930554\pi\)
0.300700 0.953719i \(-0.402780\pi\)
\(48\) 0 0
\(49\) −10.2541 + 17.7605i −1.46486 + 2.53722i
\(50\) 0 0
\(51\) 5.72522 2.14009i 0.801691 0.299673i
\(52\) 0 0
\(53\) −2.85601 −0.392304 −0.196152 0.980574i \(-0.562845\pi\)
−0.196152 + 0.980574i \(0.562845\pi\)
\(54\) 0 0
\(55\) 2.67282 0.360403
\(56\) 0 0
\(57\) −7.58123 + 2.83387i −1.00416 + 0.375355i
\(58\) 0 0
\(59\) −2.10083 + 3.63875i −0.273505 + 0.473724i −0.969757 0.244073i \(-0.921516\pi\)
0.696252 + 0.717797i \(0.254850\pi\)
\(60\) 0 0
\(61\) 3.98040 + 6.89425i 0.509638 + 0.882719i 0.999938 + 0.0111647i \(0.00355392\pi\)
−0.490300 + 0.871554i \(0.663113\pi\)
\(62\) 0 0
\(63\) 14.8765 + 5.12483i 1.87426 + 0.645668i
\(64\) 0 0
\(65\) −1.90841 3.30545i −0.236709 0.409991i
\(66\) 0 0
\(67\) 0.429983 0.744753i 0.0525308 0.0909860i −0.838564 0.544803i \(-0.816605\pi\)
0.891095 + 0.453817i \(0.149938\pi\)
\(68\) 0 0
\(69\) 1.41764 8.46766i 0.170664 1.01939i
\(70\) 0 0
\(71\) −15.1625 −1.79945 −0.899726 0.436454i \(-0.856234\pi\)
−0.899726 + 0.436454i \(0.856234\pi\)
\(72\) 0 0
\(73\) 6.28797 0.735952 0.367976 0.929835i \(-0.380051\pi\)
0.367976 + 0.929835i \(0.380051\pi\)
\(74\) 0 0
\(75\) −1.33641 1.10182i −0.154316 0.127227i
\(76\) 0 0
\(77\) 7.00924 12.1404i 0.798777 1.38352i
\(78\) 0 0
\(79\) −2.81681 4.87886i −0.316916 0.548914i 0.662927 0.748684i \(-0.269314\pi\)
−0.979843 + 0.199770i \(0.935981\pi\)
\(80\) 0 0
\(81\) 1.25518 8.91204i 0.139465 0.990227i
\(82\) 0 0
\(83\) 1.94958 + 3.37678i 0.213995 + 0.370650i 0.952961 0.303093i \(-0.0980191\pi\)
−0.738966 + 0.673742i \(0.764686\pi\)
\(84\) 0 0
\(85\) −1.76442 + 3.05606i −0.191378 + 0.331477i
\(86\) 0 0
\(87\) 2.48040 + 2.04499i 0.265927 + 0.219246i
\(88\) 0 0
\(89\) −11.0000 −1.16600 −0.582999 0.812473i \(-0.698121\pi\)
−0.582999 + 0.812473i \(0.698121\pi\)
\(90\) 0 0
\(91\) −20.0185 −2.09851
\(92\) 0 0
\(93\) 2.48040 14.8156i 0.257205 1.53630i
\(94\) 0 0
\(95\) 2.33641 4.04678i 0.239711 0.415191i
\(96\) 0 0
\(97\) 1.91764 + 3.32145i 0.194707 + 0.337242i 0.946804 0.321810i \(-0.104291\pi\)
−0.752097 + 0.659052i \(0.770958\pi\)
\(98\) 0 0
\(99\) −7.58123 2.61168i −0.761942 0.262483i
\(100\) 0 0
\(101\) 5.24482 + 9.08429i 0.521879 + 0.903921i 0.999676 + 0.0254505i \(0.00810201\pi\)
−0.477797 + 0.878470i \(0.658565\pi\)
\(102\) 0 0
\(103\) −2.05239 + 3.55485i −0.202228 + 0.350269i −0.949246 0.314534i \(-0.898152\pi\)
0.747018 + 0.664804i \(0.231485\pi\)
\(104\) 0 0
\(105\) −8.50924 + 3.18076i −0.830416 + 0.310410i
\(106\) 0 0
\(107\) −19.7345 −1.90780 −0.953901 0.300122i \(-0.902972\pi\)
−0.953901 + 0.300122i \(0.902972\pi\)
\(108\) 0 0
\(109\) −9.50811 −0.910711 −0.455356 0.890310i \(-0.650488\pi\)
−0.455356 + 0.890310i \(0.650488\pi\)
\(110\) 0 0
\(111\) −4.33641 + 1.62095i −0.411594 + 0.153854i
\(112\) 0 0
\(113\) 4.71598 8.16832i 0.443642 0.768411i −0.554314 0.832307i \(-0.687019\pi\)
0.997957 + 0.0638967i \(0.0203528\pi\)
\(114\) 0 0
\(115\) 2.47842 + 4.29275i 0.231114 + 0.400301i
\(116\) 0 0
\(117\) 2.18319 + 11.2404i 0.201836 + 1.03917i
\(118\) 0 0
\(119\) 9.25405 + 16.0285i 0.848318 + 1.46933i
\(120\) 0 0
\(121\) 1.92801 3.33941i 0.175273 0.303582i
\(122\) 0 0
\(123\) 1.05042 6.27420i 0.0947128 0.565725i
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 18.6089 1.65128 0.825638 0.564200i \(-0.190815\pi\)
0.825638 + 0.564200i \(0.190815\pi\)
\(128\) 0 0
\(129\) −4.71598 3.88814i −0.415219 0.342331i
\(130\) 0 0
\(131\) 7.67282 13.2897i 0.670378 1.16113i −0.307419 0.951574i \(-0.599465\pi\)
0.977797 0.209554i \(-0.0672012\pi\)
\(132\) 0 0
\(133\) −12.2541 21.2246i −1.06256 1.84041i
\(134\) 0 0
\(135\) 2.71400 + 4.43105i 0.233584 + 0.381364i
\(136\) 0 0
\(137\) −0.244817 0.424035i −0.0209161 0.0362278i 0.855378 0.518005i \(-0.173325\pi\)
−0.876294 + 0.481777i \(0.839992\pi\)
\(138\) 0 0
\(139\) 5.34565 9.25893i 0.453412 0.785332i −0.545183 0.838317i \(-0.683540\pi\)
0.998595 + 0.0529843i \(0.0168733\pi\)
\(140\) 0 0
\(141\) −12.3796 10.2065i −1.04255 0.859539i
\(142\) 0 0
\(143\) 10.2017 0.853106
\(144\) 0 0
\(145\) −1.85601 −0.154134
\(146\) 0 0
\(147\) −5.86525 + 35.0335i −0.483758 + 2.88951i
\(148\) 0 0
\(149\) −1.93724 + 3.35540i −0.158705 + 0.274885i −0.934402 0.356220i \(-0.884065\pi\)
0.775697 + 0.631106i \(0.217399\pi\)
\(150\) 0 0
\(151\) 7.33641 + 12.7070i 0.597029 + 1.03408i 0.993257 + 0.115932i \(0.0369855\pi\)
−0.396228 + 0.918152i \(0.629681\pi\)
\(152\) 0 0
\(153\) 7.99076 6.94420i 0.646015 0.561405i
\(154\) 0 0
\(155\) 4.33641 + 7.51089i 0.348309 + 0.603289i
\(156\) 0 0
\(157\) 6.59046 11.4150i 0.525976 0.911018i −0.473566 0.880758i \(-0.657033\pi\)
0.999542 0.0302592i \(-0.00963329\pi\)
\(158\) 0 0
\(159\) −4.63362 + 1.73205i −0.367470 + 0.137361i
\(160\) 0 0
\(161\) 25.9977 2.04891
\(162\) 0 0
\(163\) 20.8745 1.63502 0.817508 0.575917i \(-0.195355\pi\)
0.817508 + 0.575917i \(0.195355\pi\)
\(164\) 0 0
\(165\) 4.33641 1.62095i 0.337589 0.126191i
\(166\) 0 0
\(167\) −0.00197644 + 0.00342329i −0.000152941 + 0.000264902i −0.866102 0.499868i \(-0.833382\pi\)
0.865949 + 0.500132i \(0.166715\pi\)
\(168\) 0 0
\(169\) −0.784020 1.35796i −0.0603092 0.104459i
\(170\) 0 0
\(171\) −10.5812 + 9.19539i −0.809167 + 0.703189i
\(172\) 0 0
\(173\) 10.3064 + 17.8513i 0.783584 + 1.35721i 0.929841 + 0.367961i \(0.119944\pi\)
−0.146257 + 0.989247i \(0.546723\pi\)
\(174\) 0 0
\(175\) 2.62241 4.54214i 0.198235 0.343354i
\(176\) 0 0
\(177\) −1.20166 + 7.17760i −0.0903224 + 0.539501i
\(178\) 0 0
\(179\) 4.10478 0.306806 0.153403 0.988164i \(-0.450977\pi\)
0.153403 + 0.988164i \(0.450977\pi\)
\(180\) 0 0
\(181\) −4.43196 −0.329425 −0.164712 0.986342i \(-0.552670\pi\)
−0.164712 + 0.986342i \(0.552670\pi\)
\(182\) 0 0
\(183\) 10.6389 + 8.77135i 0.786450 + 0.648397i
\(184\) 0 0
\(185\) 1.33641 2.31473i 0.0982550 0.170183i
\(186\) 0 0
\(187\) −4.71598 8.16832i −0.344867 0.597326i
\(188\) 0 0
\(189\) 27.2437 0.707378i 1.98169 0.0514542i
\(190\) 0 0
\(191\) 8.58123 + 14.8631i 0.620916 + 1.07546i 0.989316 + 0.145790i \(0.0465725\pi\)
−0.368400 + 0.929668i \(0.620094\pi\)
\(192\) 0 0
\(193\) −2.94761 + 5.10541i −0.212173 + 0.367495i −0.952394 0.304868i \(-0.901388\pi\)
0.740221 + 0.672364i \(0.234721\pi\)
\(194\) 0 0
\(195\) −5.10083 4.20543i −0.365278 0.301157i
\(196\) 0 0
\(197\) −21.8353 −1.55570 −0.777850 0.628450i \(-0.783690\pi\)
−0.777850 + 0.628450i \(0.783690\pi\)
\(198\) 0 0
\(199\) −13.2488 −0.939180 −0.469590 0.882885i \(-0.655598\pi\)
−0.469590 + 0.882885i \(0.655598\pi\)
\(200\) 0 0
\(201\) 0.245947 1.46906i 0.0173478 0.103619i
\(202\) 0 0
\(203\) −4.86723 + 8.43028i −0.341612 + 0.591690i
\(204\) 0 0
\(205\) 1.83641 + 3.18076i 0.128261 + 0.222154i
\(206\) 0 0
\(207\) −2.83528 14.5977i −0.197066 1.01461i
\(208\) 0 0
\(209\) 6.24482 + 10.8163i 0.431963 + 0.748182i
\(210\) 0 0
\(211\) −0.192425 + 0.333290i −0.0132471 + 0.0229447i −0.872573 0.488484i \(-0.837550\pi\)
0.859326 + 0.511428i \(0.170883\pi\)
\(212\) 0 0
\(213\) −24.5997 + 9.19539i −1.68554 + 0.630057i
\(214\) 0 0
\(215\) 3.52884 0.240665
\(216\) 0 0
\(217\) 45.4874 3.08788
\(218\) 0 0
\(219\) 10.2017 3.81339i 0.689364 0.257685i
\(220\) 0 0
\(221\) −6.73445 + 11.6644i −0.453008 + 0.784633i
\(222\) 0 0
\(223\) 5.71400 + 9.89694i 0.382638 + 0.662748i 0.991438 0.130575i \(-0.0416823\pi\)
−0.608800 + 0.793323i \(0.708349\pi\)
\(224\) 0 0
\(225\) −2.83641 0.977122i −0.189094 0.0651415i
\(226\) 0 0
\(227\) −8.97003 15.5366i −0.595362 1.03120i −0.993496 0.113870i \(-0.963675\pi\)
0.398134 0.917327i \(-0.369658\pi\)
\(228\) 0 0
\(229\) 2.45684 4.25538i 0.162353 0.281203i −0.773359 0.633968i \(-0.781425\pi\)
0.935712 + 0.352765i \(0.114758\pi\)
\(230\) 0 0
\(231\) 4.00924 23.9474i 0.263788 1.57562i
\(232\) 0 0
\(233\) 4.59442 0.300990 0.150495 0.988611i \(-0.451913\pi\)
0.150495 + 0.988611i \(0.451913\pi\)
\(234\) 0 0
\(235\) 9.26329 0.604270
\(236\) 0 0
\(237\) −7.52884 6.20723i −0.489051 0.403203i
\(238\) 0 0
\(239\) −13.1193 + 22.7233i −0.848617 + 1.46985i 0.0338255 + 0.999428i \(0.489231\pi\)
−0.882443 + 0.470420i \(0.844102\pi\)
\(240\) 0 0
\(241\) 0.447608 + 0.775280i 0.0288330 + 0.0499402i 0.880082 0.474822i \(-0.157488\pi\)
−0.851249 + 0.524762i \(0.824154\pi\)
\(242\) 0 0
\(243\) −3.36836 15.2202i −0.216080 0.976376i
\(244\) 0 0
\(245\) −10.2541 17.7605i −0.655107 1.13468i
\(246\) 0 0
\(247\) 8.91764 15.4458i 0.567416 0.982793i
\(248\) 0 0
\(249\) 5.21090 + 4.29618i 0.330227 + 0.272259i
\(250\) 0 0
\(251\) 2.10478 0.132853 0.0664264 0.997791i \(-0.478840\pi\)
0.0664264 + 0.997791i \(0.478840\pi\)
\(252\) 0 0
\(253\) −13.2488 −0.832943
\(254\) 0 0
\(255\) −1.00924 + 6.02823i −0.0632008 + 0.377502i
\(256\) 0 0
\(257\) 2.34565 4.06278i 0.146317 0.253429i −0.783546 0.621333i \(-0.786591\pi\)
0.929864 + 0.367904i \(0.119925\pi\)
\(258\) 0 0
\(259\) −7.00924 12.1404i −0.435533 0.754365i
\(260\) 0 0
\(261\) 5.26442 + 1.81355i 0.325859 + 0.112256i
\(262\) 0 0
\(263\) −4.90841 8.50161i −0.302665 0.524232i 0.674074 0.738664i \(-0.264543\pi\)
−0.976739 + 0.214433i \(0.931210\pi\)
\(264\) 0 0
\(265\) 1.42801 2.47338i 0.0877218 0.151939i
\(266\) 0 0
\(267\) −17.8465 + 6.67103i −1.09219 + 0.408261i
\(268\) 0 0
\(269\) 20.4504 1.24688 0.623442 0.781869i \(-0.285734\pi\)
0.623442 + 0.781869i \(0.285734\pi\)
\(270\) 0 0
\(271\) −5.03920 −0.306110 −0.153055 0.988218i \(-0.548911\pi\)
−0.153055 + 0.988218i \(0.548911\pi\)
\(272\) 0 0
\(273\) −32.4781 + 12.1404i −1.96567 + 0.734768i
\(274\) 0 0
\(275\) −1.33641 + 2.31473i −0.0805887 + 0.139584i
\(276\) 0 0
\(277\) −0.523554 0.906823i −0.0314573 0.0544857i 0.849868 0.526995i \(-0.176682\pi\)
−0.881325 + 0.472510i \(0.843348\pi\)
\(278\) 0 0
\(279\) −4.96080 25.5412i −0.296995 1.52911i
\(280\) 0 0
\(281\) −0.879568 1.52346i −0.0524706 0.0908818i 0.838597 0.544752i \(-0.183376\pi\)
−0.891068 + 0.453870i \(0.850043\pi\)
\(282\) 0 0
\(283\) −1.43922 + 2.49280i −0.0855527 + 0.148182i −0.905627 0.424076i \(-0.860599\pi\)
0.820074 + 0.572258i \(0.193932\pi\)
\(284\) 0 0
\(285\) 1.33641 7.98247i 0.0791622 0.472841i
\(286\) 0 0
\(287\) 19.2633 1.13708
\(288\) 0 0
\(289\) −4.54731 −0.267489
\(290\) 0 0
\(291\) 5.12552 + 4.22578i 0.300463 + 0.247720i
\(292\) 0 0
\(293\) −12.4557 + 21.5739i −0.727671 + 1.26036i 0.230195 + 0.973145i \(0.426064\pi\)
−0.957865 + 0.287218i \(0.907270\pi\)
\(294\) 0 0
\(295\) −2.10083 3.63875i −0.122315 0.211856i
\(296\) 0 0
\(297\) −13.8837 + 0.360489i −0.805615 + 0.0209177i
\(298\) 0 0
\(299\) 9.45967 + 16.3846i 0.547067 + 0.947547i
\(300\) 0 0
\(301\) 9.25405 16.0285i 0.533395 0.923867i
\(302\) 0 0
\(303\) 14.0185 + 11.5577i 0.805340 + 0.663971i
\(304\) 0 0
\(305\) −7.96080 −0.455834
\(306\) 0 0
\(307\) −1.32322 −0.0755203 −0.0377602 0.999287i \(-0.512022\pi\)
−0.0377602 + 0.999287i \(0.512022\pi\)
\(308\) 0 0
\(309\) −1.17395 + 7.01210i −0.0667839 + 0.398905i
\(310\) 0 0
\(311\) −2.47645 + 4.28933i −0.140426 + 0.243226i −0.927657 0.373433i \(-0.878181\pi\)
0.787231 + 0.616658i \(0.211514\pi\)
\(312\) 0 0
\(313\) −4.80757 8.32696i −0.271740 0.470668i 0.697567 0.716519i \(-0.254266\pi\)
−0.969308 + 0.245851i \(0.920932\pi\)
\(314\) 0 0
\(315\) −11.8765 + 10.3210i −0.669163 + 0.581521i
\(316\) 0 0
\(317\) 6.15322 + 10.6577i 0.345599 + 0.598596i 0.985462 0.169893i \(-0.0543423\pi\)
−0.639863 + 0.768489i \(0.721009\pi\)
\(318\) 0 0
\(319\) 2.48040 4.29618i 0.138876 0.240540i
\(320\) 0 0
\(321\) −32.0173 + 11.9681i −1.78703 + 0.667995i
\(322\) 0 0
\(323\) −16.4896 −0.917508
\(324\) 0 0
\(325\) 3.81681 0.211719
\(326\) 0 0
\(327\) −15.4260 + 5.76626i −0.853061 + 0.318875i
\(328\) 0 0
\(329\) 24.2921 42.0752i 1.33927 2.31968i
\(330\) 0 0
\(331\) −0.773654 1.34001i −0.0425239 0.0736535i 0.843980 0.536374i \(-0.180207\pi\)
−0.886504 + 0.462721i \(0.846873\pi\)
\(332\) 0 0
\(333\) −6.05239 + 5.25970i −0.331669 + 0.288230i
\(334\) 0 0
\(335\) 0.429983 + 0.744753i 0.0234925 + 0.0406902i
\(336\) 0 0
\(337\) −16.1585 + 27.9874i −0.880210 + 1.52457i −0.0291025 + 0.999576i \(0.509265\pi\)
−0.851107 + 0.524992i \(0.824068\pi\)
\(338\) 0 0
\(339\) 2.69751 16.1124i 0.146509 0.875105i
\(340\) 0 0
\(341\) −23.1809 −1.25532
\(342\) 0 0
\(343\) −70.8475 −3.82541
\(344\) 0 0
\(345\) 6.62438 + 5.46154i 0.356645 + 0.294039i
\(346\) 0 0
\(347\) 12.5420 21.7234i 0.673291 1.16617i −0.303674 0.952776i \(-0.598213\pi\)
0.976965 0.213399i \(-0.0684533\pi\)
\(348\) 0 0
\(349\) −10.3745 17.9691i −0.555333 0.961866i −0.997878 0.0651190i \(-0.979257\pi\)
0.442544 0.896747i \(-0.354076\pi\)
\(350\) 0 0
\(351\) 10.3588 + 16.9125i 0.552914 + 0.902721i
\(352\) 0 0
\(353\) 9.05767 + 15.6884i 0.482091 + 0.835007i 0.999789 0.0205571i \(-0.00654399\pi\)
−0.517697 + 0.855564i \(0.673211\pi\)
\(354\) 0 0
\(355\) 7.58123 13.1311i 0.402370 0.696925i
\(356\) 0 0
\(357\) 24.7345 + 20.3926i 1.30909 + 1.07929i
\(358\) 0 0
\(359\) 25.3720 1.33908 0.669542 0.742774i \(-0.266490\pi\)
0.669542 + 0.742774i \(0.266490\pi\)
\(360\) 0 0
\(361\) 2.83528 0.149225
\(362\) 0 0
\(363\) 1.10281 6.58713i 0.0578823 0.345735i
\(364\) 0 0
\(365\) −3.14399 + 5.44554i −0.164564 + 0.285033i
\(366\) 0 0
\(367\) −3.09159 5.35480i −0.161380 0.279518i 0.773984 0.633205i \(-0.218261\pi\)
−0.935364 + 0.353687i \(0.884928\pi\)
\(368\) 0 0
\(369\) −2.10083 10.8163i −0.109365 0.563076i
\(370\) 0 0
\(371\) −7.48963 12.9724i −0.388842 0.673495i
\(372\) 0 0
\(373\) 8.40727 14.5618i 0.435312 0.753983i −0.562009 0.827131i \(-0.689971\pi\)
0.997321 + 0.0731484i \(0.0233047\pi\)
\(374\) 0 0
\(375\) 1.62241 0.606458i 0.0837808 0.0313173i
\(376\) 0 0
\(377\) −7.08405 −0.364847
\(378\) 0 0
\(379\) 22.0000 1.13006 0.565032 0.825069i \(-0.308864\pi\)
0.565032 + 0.825069i \(0.308864\pi\)
\(380\) 0 0
\(381\) 30.1913 11.2855i 1.54675 0.578175i
\(382\) 0 0
\(383\) 3.39804 5.88558i 0.173632 0.300739i −0.766055 0.642775i \(-0.777783\pi\)
0.939687 + 0.342036i \(0.111116\pi\)
\(384\) 0 0
\(385\) 7.00924 + 12.1404i 0.357224 + 0.618730i
\(386\) 0 0
\(387\) −10.0092 3.44811i −0.508798 0.175277i
\(388\) 0 0
\(389\) 4.30757 + 7.46094i 0.218403 + 0.378285i 0.954320 0.298787i \(-0.0965820\pi\)
−0.735917 + 0.677072i \(0.763249\pi\)
\(390\) 0 0
\(391\) 8.74595 15.1484i 0.442302 0.766089i
\(392\) 0 0
\(393\) 4.38880 26.2146i 0.221386 1.32235i
\(394\) 0 0
\(395\) 5.63362 0.283458
\(396\) 0 0
\(397\) 22.4033 1.12439 0.562195 0.827005i \(-0.309957\pi\)
0.562195 + 0.827005i \(0.309957\pi\)
\(398\) 0 0
\(399\) −32.7529 27.0035i −1.63970 1.35186i
\(400\) 0 0
\(401\) −6.95684 + 12.0496i −0.347408 + 0.601729i −0.985788 0.167993i \(-0.946272\pi\)
0.638380 + 0.769721i \(0.279605\pi\)
\(402\) 0 0
\(403\) 16.5513 + 28.6676i 0.824477 + 1.42804i
\(404\) 0 0
\(405\) 7.09046 + 5.54304i 0.352328 + 0.275436i
\(406\) 0 0
\(407\) 3.57199 + 6.18687i 0.177057 + 0.306672i
\(408\) 0 0
\(409\) −15.3064 + 26.5115i −0.756855 + 1.31091i 0.187592 + 0.982247i \(0.439932\pi\)
−0.944447 + 0.328664i \(0.893402\pi\)
\(410\) 0 0
\(411\) −0.654353 0.539488i −0.0322768 0.0266110i
\(412\) 0 0
\(413\) −22.0369 −1.08437
\(414\) 0 0
\(415\) −3.89917 −0.191403
\(416\) 0 0
\(417\) 3.05767 18.2637i 0.149735 0.894376i
\(418\) 0 0
\(419\) 6.86525 11.8910i 0.335389 0.580911i −0.648170 0.761496i \(-0.724465\pi\)
0.983560 + 0.180584i \(0.0577988\pi\)
\(420\) 0 0
\(421\) −7.96080 13.7885i −0.387985 0.672011i 0.604193 0.796838i \(-0.293496\pi\)
−0.992178 + 0.124827i \(0.960162\pi\)
\(422\) 0 0
\(423\) −26.2745 9.05136i −1.27751 0.440092i
\(424\) 0 0
\(425\) −1.76442 3.05606i −0.0855869 0.148241i
\(426\) 0 0
\(427\) −20.8765 + 36.1591i −1.01028 + 1.74986i
\(428\) 0 0
\(429\) 16.5513 6.18687i 0.799102 0.298705i
\(430\) 0 0
\(431\) −25.2672 −1.21708 −0.608540 0.793523i \(-0.708245\pi\)
−0.608540 + 0.793523i \(0.708245\pi\)
\(432\) 0 0
\(433\) 9.24086 0.444088 0.222044 0.975037i \(-0.428727\pi\)
0.222044 + 0.975037i \(0.428727\pi\)
\(434\) 0 0
\(435\) −3.01121 + 1.12559i −0.144377 + 0.0539681i
\(436\) 0 0
\(437\) −11.5812 + 20.0593i −0.554005 + 0.959565i
\(438\) 0 0
\(439\) 8.71598 + 15.0965i 0.415991 + 0.720518i 0.995532 0.0944256i \(-0.0301014\pi\)
−0.579541 + 0.814943i \(0.696768\pi\)
\(440\) 0 0
\(441\) 11.7305 + 60.3957i 0.558595 + 2.87598i
\(442\) 0 0
\(443\) 1.81483 + 3.14338i 0.0862254 + 0.149347i 0.905913 0.423464i \(-0.139186\pi\)
−0.819687 + 0.572811i \(0.805853\pi\)
\(444\) 0 0
\(445\) 5.50000 9.52628i 0.260725 0.451589i
\(446\) 0 0
\(447\) −1.10809 + 6.61869i −0.0524108 + 0.313053i
\(448\) 0 0
\(449\) −39.6785 −1.87254 −0.936271 0.351278i \(-0.885747\pi\)
−0.936271 + 0.351278i \(0.885747\pi\)
\(450\) 0 0
\(451\) −9.81681 −0.462256
\(452\) 0 0
\(453\) 19.6089 + 16.1668i 0.921308 + 0.759582i
\(454\) 0 0
\(455\) 10.0092 17.3365i 0.469240 0.812748i
\(456\) 0 0
\(457\) −2.84678 4.93076i −0.133167 0.230651i 0.791729 0.610873i \(-0.209181\pi\)
−0.924896 + 0.380221i \(0.875848\pi\)
\(458\) 0 0
\(459\) 8.75292 16.1124i 0.408551 0.752062i
\(460\) 0 0
\(461\) −8.65850 14.9970i −0.403267 0.698479i 0.590851 0.806780i \(-0.298792\pi\)
−0.994118 + 0.108302i \(0.965459\pi\)
\(462\) 0 0
\(463\) −12.8837 + 22.3153i −0.598757 + 1.03708i 0.394248 + 0.919004i \(0.371005\pi\)
−0.993005 + 0.118074i \(0.962328\pi\)
\(464\) 0 0
\(465\) 11.5905 + 9.55588i 0.537495 + 0.443143i
\(466\) 0 0
\(467\) −1.04711 −0.0484544 −0.0242272 0.999706i \(-0.507713\pi\)
−0.0242272 + 0.999706i \(0.507713\pi\)
\(468\) 0 0
\(469\) 4.51037 0.208269
\(470\) 0 0
\(471\) 3.76970 22.5167i 0.173699 1.03751i
\(472\) 0 0
\(473\) −4.71598 + 8.16832i −0.216841 + 0.375580i
\(474\) 0 0
\(475\) 2.33641 + 4.04678i 0.107202 + 0.185679i
\(476\) 0 0
\(477\) −6.46721 + 5.62019i −0.296113 + 0.257331i
\(478\) 0 0
\(479\) −11.2880 19.5513i −0.515761 0.893324i −0.999833 0.0182955i \(-0.994176\pi\)
0.484072 0.875028i \(-0.339157\pi\)
\(480\) 0 0
\(481\) 5.10083 8.83490i 0.232578 0.402837i
\(482\) 0 0
\(483\) 42.1790 15.7665i 1.91921 0.717402i
\(484\) 0 0
\(485\) −3.83528 −0.174151
\(486\) 0 0
\(487\) 0.923855 0.0418638 0.0209319 0.999781i \(-0.493337\pi\)
0.0209319 + 0.999781i \(0.493337\pi\)
\(488\) 0 0
\(489\) 33.8669 12.6595i 1.53152 0.572482i
\(490\) 0 0
\(491\) −4.04316 + 7.00295i −0.182465 + 0.316039i −0.942719 0.333587i \(-0.891741\pi\)
0.760254 + 0.649626i \(0.225074\pi\)
\(492\) 0 0
\(493\) 3.27478 + 5.67209i 0.147489 + 0.255458i
\(494\) 0 0
\(495\) 6.05239 5.25970i 0.272035 0.236406i
\(496\) 0 0
\(497\) −39.7622 68.8701i −1.78358 3.08925i
\(498\) 0 0
\(499\) 6.34169 10.9841i 0.283893 0.491718i −0.688447 0.725287i \(-0.741707\pi\)
0.972340 + 0.233569i \(0.0750405\pi\)
\(500\) 0 0
\(501\) −0.00113051 + 0.00675261i −5.05075e−5 + 0.000301684i
\(502\) 0 0
\(503\) 4.93837 0.220191 0.110096 0.993921i \(-0.464884\pi\)
0.110096 + 0.993921i \(0.464884\pi\)
\(504\) 0 0
\(505\) −10.4896 −0.466783
\(506\) 0 0
\(507\) −2.09555 1.72770i −0.0930665 0.0767296i
\(508\) 0 0
\(509\) −7.60478 + 13.1719i −0.337076 + 0.583833i −0.983881 0.178822i \(-0.942771\pi\)
0.646805 + 0.762655i \(0.276105\pi\)
\(510\) 0 0
\(511\) 16.4896 + 28.5609i 0.729458 + 1.26346i
\(512\) 0 0
\(513\) −11.5905 + 21.3357i −0.511732 + 0.941996i
\(514\) 0 0
\(515\) −2.05239 3.55485i −0.0904392 0.156645i
\(516\) 0 0
\(517\) −12.3796 + 21.4420i −0.544453 + 0.943020i
\(518\) 0 0
\(519\) 27.5473 + 22.7117i 1.20919 + 0.996931i
\(520\) 0 0
\(521\) 22.1809 0.971764 0.485882 0.874024i \(-0.338498\pi\)
0.485882 + 0.874024i \(0.338498\pi\)
\(522\) 0 0
\(523\) −9.46495 −0.413873 −0.206937 0.978354i \(-0.566349\pi\)
−0.206937 + 0.978354i \(0.566349\pi\)
\(524\) 0 0
\(525\) 1.50000 8.95959i 0.0654654 0.391029i
\(526\) 0 0
\(527\) 15.3025 26.5047i 0.666587 1.15456i
\(528\) 0 0
\(529\) −0.785151 1.35992i −0.0341370 0.0591270i
\(530\) 0 0
\(531\) 2.40332 + 12.3737i 0.104295 + 0.536975i
\(532\) 0 0
\(533\) 7.00924 + 12.1404i 0.303604 + 0.525857i
\(534\) 0 0
\(535\) 9.86723 17.0905i 0.426597 0.738888i
\(536\) 0 0
\(537\) 6.65964 2.48938i 0.287384 0.107425i
\(538\) 0 0
\(539\) 54.8145 2.36103
\(540\) 0 0
\(541\) −2.42405 −0.104218 −0.0521091 0.998641i \(-0.516594\pi\)
−0.0521091 + 0.998641i \(0.516594\pi\)
\(542\) 0 0
\(543\) −7.19045 + 2.68780i −0.308572 + 0.115344i
\(544\) 0 0
\(545\) 4.75405 8.23426i 0.203641 0.352717i
\(546\) 0 0
\(547\) 7.64088 + 13.2344i 0.326700 + 0.565862i 0.981855 0.189633i \(-0.0607299\pi\)
−0.655155 + 0.755495i \(0.727397\pi\)
\(548\) 0 0
\(549\) 22.5801 + 7.77867i 0.963695 + 0.331986i
\(550\) 0 0
\(551\) −4.33641 7.51089i −0.184737 0.319974i
\(552\) 0 0
\(553\) 14.7737 25.5887i 0.628240 1.08814i
\(554\) 0 0
\(555\) 0.764419 4.56592i 0.0324478 0.193813i
\(556\) 0 0
\(557\) 38.9793 1.65160 0.825802 0.563960i \(-0.190723\pi\)
0.825802 + 0.563960i \(0.190723\pi\)
\(558\) 0 0
\(559\) 13.4689 0.569674
\(560\) 0 0
\(561\) −12.6050 10.3923i −0.532183 0.438763i
\(562\) 0 0
\(563\) 2.30447 3.99146i 0.0971217 0.168220i −0.813370 0.581746i \(-0.802370\pi\)
0.910492 + 0.413526i \(0.135703\pi\)
\(564\) 0 0
\(565\) 4.71598 + 8.16832i 0.198403 + 0.343644i
\(566\) 0 0
\(567\) 43.7714 17.6698i 1.83823 0.742062i
\(568\) 0 0
\(569\) −5.69129 9.85761i −0.238591 0.413253i 0.721719 0.692186i \(-0.243352\pi\)
−0.960310 + 0.278934i \(0.910019\pi\)
\(570\) 0 0
\(571\) −22.6129 + 39.1667i −0.946320 + 1.63907i −0.193233 + 0.981153i \(0.561897\pi\)
−0.753087 + 0.657921i \(0.771436\pi\)
\(572\) 0 0
\(573\) 22.9361 + 18.9099i 0.958170 + 0.789973i
\(574\) 0 0
\(575\) −4.95684 −0.206715
\(576\) 0 0
\(577\) 5.14399 0.214147 0.107073 0.994251i \(-0.465852\pi\)
0.107073 + 0.994251i \(0.465852\pi\)
\(578\) 0 0
\(579\) −1.68601 + 10.0707i −0.0700683 + 0.418522i
\(580\) 0 0
\(581\) −10.2252 + 17.7106i −0.424213 + 0.734759i
\(582\) 0 0
\(583\) 3.81681 + 6.61091i 0.158076 + 0.273796i
\(584\) 0 0
\(585\) −10.8260 3.72949i −0.447602 0.154195i
\(586\) 0 0
\(587\) 21.6409 + 37.4831i 0.893215 + 1.54709i 0.835999 + 0.548731i \(0.184889\pi\)
0.0572160 + 0.998362i \(0.481778\pi\)
\(588\) 0 0
\(589\) −20.2633 + 35.0970i −0.834934 + 1.44615i
\(590\) 0 0
\(591\) −35.4257 + 13.2422i −1.45722 + 0.544710i
\(592\) 0 0
\(593\) 33.3641 1.37010 0.685050 0.728496i \(-0.259780\pi\)
0.685050 + 0.728496i \(0.259780\pi\)
\(594\) 0 0
\(595\) −18.5081 −0.758758
\(596\) 0 0
\(597\) −21.4949 + 8.03482i −0.879728 + 0.328843i
\(598\) 0 0
\(599\) −20.0577 + 34.7409i −0.819534 + 1.41948i 0.0864914 + 0.996253i \(0.472434\pi\)
−0.906026 + 0.423223i \(0.860899\pi\)
\(600\) 0 0
\(601\) 2.98153 + 5.16416i 0.121619 + 0.210650i 0.920406 0.390963i \(-0.127858\pi\)
−0.798787 + 0.601614i \(0.794525\pi\)
\(602\) 0 0
\(603\) −0.491895 2.53257i −0.0200315 0.103134i
\(604\) 0 0
\(605\) 1.92801 + 3.33941i 0.0783846 + 0.135766i
\(606\) 0 0
\(607\) 7.57002 13.1117i 0.307258 0.532186i −0.670504 0.741906i \(-0.733922\pi\)
0.977761 + 0.209720i \(0.0672554\pi\)
\(608\) 0 0
\(609\) −2.78402 + 16.6291i −0.112814 + 0.673846i
\(610\) 0 0
\(611\) 35.3562 1.43036
\(612\) 0 0
\(613\) 28.5081 1.15143 0.575716 0.817650i \(-0.304723\pi\)
0.575716 + 0.817650i \(0.304723\pi\)
\(614\) 0 0
\(615\) 4.90841 + 4.04678i 0.197926 + 0.163182i
\(616\) 0 0
\(617\) −8.71598 + 15.0965i −0.350892 + 0.607763i −0.986406 0.164326i \(-0.947455\pi\)
0.635514 + 0.772089i \(0.280788\pi\)
\(618\) 0 0
\(619\) −14.8260 25.6795i −0.595909 1.03214i −0.993418 0.114546i \(-0.963459\pi\)
0.397509 0.917598i \(-0.369875\pi\)
\(620\) 0 0
\(621\) −13.4529 21.9640i −0.539846 0.881385i
\(622\) 0 0
\(623\) −28.8465 49.9636i −1.15571 2.00175i
\(624\) 0 0
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 0 0
\(627\) 16.6913 + 13.7613i 0.666586 + 0.549574i
\(628\) 0 0
\(629\) −9.43196 −0.376077
\(630\) 0 0
\(631\) −40.1233 −1.59728 −0.798641 0.601808i \(-0.794447\pi\)
−0.798641 + 0.601808i \(0.794447\pi\)
\(632\) 0 0
\(633\) −0.110066 + 0.657431i −0.00437473 + 0.0261305i
\(634\) 0 0
\(635\) −9.30447 + 16.1158i −0.369237 + 0.639536i
\(636\) 0 0
\(637\) −39.1378 67.7886i −1.55070 2.68588i
\(638\) 0 0
\(639\) −34.3342 + 29.8373i −1.35824 + 1.18035i
\(640\) 0 0
\(641\) −2.20674 3.82219i −0.0871612 0.150968i 0.819149 0.573581i \(-0.194446\pi\)
−0.906310 + 0.422613i \(0.861113\pi\)
\(642\) 0 0
\(643\) −9.91566 + 17.1744i −0.391036 + 0.677294i −0.992586 0.121541i \(-0.961216\pi\)
0.601551 + 0.798835i \(0.294550\pi\)
\(644\) 0 0
\(645\) 5.72522 2.14009i 0.225430 0.0842660i
\(646\) 0 0
\(647\) −42.6873 −1.67821 −0.839106 0.543967i \(-0.816921\pi\)
−0.839106 + 0.543967i \(0.816921\pi\)
\(648\) 0 0
\(649\) 11.2303 0.440828
\(650\) 0 0
\(651\) 73.7991 27.5862i 2.89241 1.08119i
\(652\) 0 0
\(653\) 18.6821 32.3583i 0.731085 1.26628i −0.225334 0.974282i \(-0.572347\pi\)
0.956420 0.291996i \(-0.0943193\pi\)
\(654\) 0 0
\(655\) 7.67282 + 13.2897i 0.299802 + 0.519272i
\(656\) 0 0
\(657\) 14.2386 12.3737i 0.555501 0.482746i
\(658\) 0 0
\(659\) 2.71598 + 4.70422i 0.105800 + 0.183250i 0.914065 0.405569i \(-0.132926\pi\)
−0.808265 + 0.588819i \(0.799593\pi\)
\(660\) 0 0
\(661\) −8.54731 + 14.8044i −0.332452 + 0.575823i −0.982992 0.183648i \(-0.941209\pi\)
0.650540 + 0.759472i \(0.274543\pi\)
\(662\) 0 0
\(663\) −3.85206 + 23.0086i −0.149602 + 0.893580i
\(664\) 0 0
\(665\) 24.5081 0.950384
\(666\) 0 0
\(667\) 9.19997 0.356224
\(668\) 0 0
\(669\) 15.2725 + 12.5916i 0.590470 + 0.486819i
\(670\) 0 0
\(671\) 10.6389 18.4271i 0.410710 0.711371i
\(672\) 0 0
\(673\) 19.7005 + 34.1223i 0.759400 + 1.31532i 0.943157 + 0.332347i \(0.107841\pi\)
−0.183757 + 0.982972i \(0.558826\pi\)
\(674\) 0 0
\(675\) −5.19440 + 0.134872i −0.199933 + 0.00519122i
\(676\) 0 0
\(677\) −6.13475 10.6257i −0.235778 0.408379i 0.723721 0.690093i \(-0.242430\pi\)
−0.959498 + 0.281714i \(0.909097\pi\)
\(678\) 0 0
\(679\) −10.0577 + 17.4204i −0.385978 + 0.668534i
\(680\) 0 0
\(681\) −23.9753 19.7667i −0.918736 0.757461i
\(682\) 0 0
\(683\) 11.8952 0.455158 0.227579 0.973760i \(-0.426919\pi\)
0.227579 + 0.973760i \(0.426919\pi\)
\(684\) 0 0
\(685\) 0.489634 0.0187080
\(686\) 0 0
\(687\) 1.40530 8.39393i 0.0536155 0.320249i
\(688\) 0 0
\(689\) 5.45043 9.44042i 0.207645 0.359651i
\(690\) 0 0
\(691\) 2.63362 + 4.56156i 0.100188 + 0.173530i 0.911762 0.410719i \(-0.134722\pi\)
−0.811574 + 0.584249i \(0.801389\pi\)
\(692\) 0 0
\(693\) −8.01847 41.2839i −0.304597 1.56825i
\(694\) 0 0
\(695\) 5.34565 + 9.25893i 0.202772 + 0.351211i
\(696\) 0 0
\(697\) 6.48040 11.2244i 0.245463 0.425154i
\(698\) 0 0
\(699\) 7.45402 2.78632i 0.281937 0.105388i
\(700\) 0 0
\(701\) −22.1131 −0.835200 −0.417600 0.908631i \(-0.637129\pi\)
−0.417600 + 0.908631i \(0.637129\pi\)
\(702\) 0 0
\(703\) 12.4896 0.471055
\(704\) 0 0
\(705\) 15.0288 5.61779i 0.566019 0.211578i
\(706\) 0 0
\(707\) −27.5081 + 47.6454i −1.03455 + 1.79189i
\(708\) 0 0
\(709\) −8.70561 15.0786i −0.326946 0.566287i 0.654958 0.755665i \(-0.272686\pi\)
−0.981904 + 0.189378i \(0.939353\pi\)
\(710\) 0 0
\(711\) −15.9793 5.50474i −0.599269 0.206444i
\(712\) 0 0
\(713\) −21.4949 37.2303i −0.804991 1.39429i
\(714\) 0 0
\(715\) −5.10083 + 8.83490i −0.190760 + 0.330406i
\(716\) 0 0
\(717\) −7.50415 + 44.8228i −0.280248 + 1.67394i
\(718\) 0 0
\(719\) −19.4689 −0.726068 −0.363034 0.931776i \(-0.618259\pi\)
−0.363034 + 0.931776i \(0.618259\pi\)
\(720\) 0 0
\(721\) −21.5288 −0.801776
\(722\) 0 0
\(723\) 1.19638 + 0.986366i 0.0444938 + 0.0366833i
\(724\) 0 0
\(725\) 0.928007 1.60735i 0.0344653 0.0596957i
\(726\) 0 0
\(727\) 11.9628 + 20.7201i 0.443675 + 0.768467i 0.997959 0.0638604i \(-0.0203412\pi\)
−0.554284 + 0.832328i \(0.687008\pi\)
\(728\) 0 0
\(729\) −14.6952 22.6506i −0.544268 0.838911i
\(730\) 0 0
\(731\) −6.22635 10.7843i −0.230290 0.398873i
\(732\) 0 0
\(733\) 2.05767 3.56400i 0.0760019 0.131639i −0.825520 0.564373i \(-0.809118\pi\)
0.901522 + 0.432734i \(0.142451\pi\)
\(734\) 0 0
\(735\) −27.4073 22.5962i −1.01093 0.833474i
\(736\) 0 0
\(737\) −2.29854 −0.0846678
\(738\) 0 0
\(739\) 16.8145 0.618533 0.309267 0.950975i \(-0.399916\pi\)
0.309267 + 0.950975i \(0.399916\pi\)
\(740\) 0 0
\(741\) 5.10083 30.4676i 0.187384 1.11925i
\(742\) 0 0
\(743\) −13.6801 + 23.6946i −0.501874 + 0.869271i 0.498124 + 0.867106i \(0.334022\pi\)
−0.999998 + 0.00216476i \(0.999311\pi\)
\(744\) 0 0
\(745\) −1.93724 3.35540i −0.0709751 0.122932i
\(746\) 0 0
\(747\) 11.0597 + 3.80997i 0.404651 + 0.139399i
\(748\) 0 0
\(749\) −51.7518 89.6367i −1.89097 3.27525i
\(750\) 0 0
\(751\) −2.23558 + 3.87214i −0.0815775 + 0.141296i −0.903928 0.427685i \(-0.859329\pi\)
0.822350 + 0.568982i \(0.192662\pi\)
\(752\) 0 0
\(753\) 3.41482 1.27646i 0.124443 0.0465168i
\(754\) 0 0
\(755\) −14.6728 −0.533999
\(756\) 0 0
\(757\) −17.7753 −0.646056 −0.323028 0.946389i \(-0.604701\pi\)
−0.323028 + 0.946389i \(0.604701\pi\)
\(758\) 0 0
\(759\) −21.4949 + 8.03482i −0.780216 + 0.291645i
\(760\) 0 0
\(761\) 20.1952 34.9792i 0.732077 1.26799i −0.223917 0.974608i \(-0.571884\pi\)
0.955994 0.293387i \(-0.0947823\pi\)
\(762\) 0 0
\(763\) −24.9341 43.1872i −0.902676 1.56348i
\(764\) 0 0
\(765\) 2.01847 + 10.3923i 0.0729780 + 0.375735i
\(766\) 0 0
\(767\) −8.01847 13.8884i −0.289530 0.501481i
\(768\) 0 0
\(769\) 19.8496 34.3805i 0.715795 1.23979i −0.246857 0.969052i \(-0.579398\pi\)
0.962652 0.270741i \(-0.0872688\pi\)
\(770\) 0 0
\(771\) 1.34169 8.01402i 0.0483199 0.288618i
\(772\) 0 0
\(773\) 8.97927 0.322962 0.161481 0.986876i \(-0.448373\pi\)
0.161481 + 0.986876i \(0.448373\pi\)
\(774\) 0 0
\(775\) −8.67282 −0.311537
\(776\) 0 0
\(777\) −18.7345 15.4458i −0.672095 0.554115i
\(778\) 0 0
\(779\) −8.58123 + 14.8631i −0.307454 + 0.532527i
\(780\) 0 0
\(781\) 20.2633 + 35.0970i 0.725077 + 1.25587i
\(782\) 0 0
\(783\) 9.64088 0.250324i 0.344537 0.00894585i
\(784\) 0 0
\(785\) 6.59046 + 11.4150i 0.235224 + 0.407420i
\(786\) 0 0
\(787\) −17.9476 + 31.0862i −0.639763 + 1.10810i 0.345721 + 0.938337i \(0.387634\pi\)
−0.985485 + 0.169765i \(0.945699\pi\)
\(788\) 0 0
\(789\) −13.1193 10.8163i −0.467060 0.385072i
\(790\) 0 0
\(791\) 49.4689 1.75891
\(792\) 0 0
\(793\) −30.3849 −1.07900
\(794\) 0 0
\(795\) 0.816810 4.87886i 0.0289693 0.173035i
\(796\) 0 0
\(797\) −18.9229 + 32.7755i −0.670284 + 1.16097i 0.307539 + 0.951535i \(0.400495\pi\)
−0.977823 + 0.209431i \(0.932839\pi\)
\(798\) 0 0
\(799\) −16.3443 28.3092i −0.578220 1.00151i
\(800\) 0 0
\(801\) −24.9086 + 21.6463i −0.880102 + 0.764834i
\(802\) 0 0
\(803\) −8.40332 14.5550i −0.296547 0.513634i
\(804\) 0 0
\(805\) −12.9989 + 22.5147i −0.458150 + 0.793539i
\(806\) 0 0
\(807\) 33.1790 12.4023i 1.16795 0.436582i
\(808\) 0 0
\(809\) −27.8722 −0.979935 −0.489968 0.871741i \(-0.662991\pi\)
−0.489968 + 0.871741i \(0.662991\pi\)
\(810\) 0 0
\(811\) 48.3249 1.69692 0.848459 0.529262i \(-0.177531\pi\)
0.848459 + 0.529262i \(0.177531\pi\)
\(812\) 0 0
\(813\) −8.17565 + 3.05606i −0.286732 + 0.107181i
\(814\) 0 0
\(815\) −10.4372 + 18.0778i −0.365601 + 0.633239i
\(816\) 0 0
\(817\) 8.24482 + 14.2804i 0.288450 + 0.499609i
\(818\) 0 0
\(819\) −45.3302 + 39.3932i −1.58397 + 1.37651i
\(820\) 0 0
\(821\) 14.8549 + 25.7294i 0.518439 + 0.897963i 0.999770 + 0.0214240i \(0.00682000\pi\)
−0.481331 + 0.876539i \(0.659847\pi\)
\(822\) 0 0
\(823\) 15.1028 26.1588i 0.526451 0.911839i −0.473074 0.881023i \(-0.656856\pi\)
0.999525 0.0308169i \(-0.00981088\pi\)
\(824\) 0 0
\(825\) −0.764419 + 4.56592i −0.0266136 + 0.158965i
\(826\) 0 0
\(827\) −1.14003 −0.0396429 −0.0198214 0.999804i \(-0.506310\pi\)
−0.0198214 + 0.999804i \(0.506310\pi\)
\(828\) 0 0
\(829\) −17.9608 −0.623804 −0.311902 0.950114i \(-0.600966\pi\)
−0.311902 + 0.950114i \(0.600966\pi\)
\(830\) 0 0
\(831\) −1.39937 1.15372i −0.0485436 0.0400222i
\(832\) 0 0
\(833\) −36.1849 + 62.6741i −1.25373 + 2.17153i
\(834\) 0 0
\(835\) −0.00197644 0.00342329i −6.83975e−5 0.000118468i
\(836\) 0 0
\(837\) −23.5381 38.4297i −0.813595 1.32832i
\(838\) 0 0
\(839\) −0.605914 1.04947i −0.0209185 0.0362318i 0.855377 0.518007i \(-0.173326\pi\)
−0.876295 + 0.481775i \(0.839992\pi\)
\(840\) 0 0
\(841\) 12.7776 22.1315i 0.440607 0.763154i
\(842\) 0 0
\(843\) −2.35093 1.93825i −0.0809703 0.0667568i
\(844\) 0 0
\(845\) 1.56804 0.0539422
\(846\) 0 0
\(847\) 20.2241 0.694908
\(848\) 0 0
\(849\) −0.823223 + 4.91716i −0.0282530 + 0.168757i
\(850\) 0 0
\(851\) −6.62438 + 11.4738i −0.227081 + 0.393316i
\(852\) 0 0
\(853\) −17.6821 30.6262i −0.605422 1.04862i −0.991985 0.126359i \(-0.959671\pi\)
0.386562 0.922263i \(-0.373662\pi\)
\(854\) 0 0
\(855\) −2.67282 13.7613i −0.0914086 0.470627i
\(856\) 0 0
\(857\) 20.9061 + 36.2105i 0.714140 + 1.23693i 0.963290 + 0.268462i \(0.0865155\pi\)
−0.249150 + 0.968465i \(0.580151\pi\)
\(858\) 0 0
\(859\) 5.88767 10.1977i 0.200885 0.347943i −0.747929 0.663779i \(-0.768952\pi\)
0.948814 + 0.315836i \(0.102285\pi\)
\(860\) 0 0
\(861\) 31.2529 11.6824i 1.06510 0.398134i
\(862\) 0 0
\(863\) −26.1193 −0.889111 −0.444556 0.895751i \(-0.646638\pi\)
−0.444556 + 0.895751i \(0.646638\pi\)
\(864\) 0 0
\(865\) −20.6129 −0.700859
\(866\) 0 0
\(867\) −7.37759 + 2.75775i −0.250556 + 0.0936581i
\(868\) 0 0
\(869\) −7.52884 + 13.0403i −0.255398 + 0.442363i
\(870\) 0 0
\(871\) 1.64116 + 2.84258i 0.0556087 + 0.0963171i
\(872\) 0 0
\(873\) 10.8784 + 3.74754i 0.368179 + 0.126835i
\(874\) 0 0
\(875\) 2.62241 + 4.54214i 0.0886536 + 0.153553i
\(876\) 0 0
\(877\) 26.3117 45.5732i 0.888484 1.53890i 0.0468161 0.998904i \(-0.485093\pi\)
0.841668 0.539996i \(-0.181574\pi\)
\(878\) 0 0
\(879\) −7.12458 + 42.5556i −0.240306 + 1.43536i
\(880\) 0 0
\(881\) −12.8089 −0.431543 −0.215771 0.976444i \(-0.569227\pi\)
−0.215771 + 0.976444i \(0.569227\pi\)
\(882\) 0 0
\(883\) 21.7529 0.732044 0.366022 0.930606i \(-0.380719\pi\)
0.366022 + 0.930606i \(0.380719\pi\)
\(884\) 0 0
\(885\) −5.61515 4.62947i −0.188751 0.155618i
\(886\) 0 0
\(887\) 16.5236 28.6196i 0.554807 0.960953i −0.443112 0.896466i \(-0.646126\pi\)
0.997919 0.0644870i \(-0.0205411\pi\)
\(888\) 0 0
\(889\) 48.8002 + 84.5245i 1.63671 + 2.83486i
\(890\) 0 0
\(891\) −22.3064 + 9.00475i −0.747294 + 0.301670i
\(892\) 0 0
\(893\) 21.6429 + 37.4865i 0.724251 + 1.25444i
\(894\) 0 0
\(895\) −2.05239 + 3.55485i −0.0686039 + 0.118825i
\(896\) 0 0
\(897\) 25.2840 + 20.8457i 0.844209 + 0.696016i
\(898\) 0 0
\(899\) 16.0969 0.536861
\(900\) 0 0
\(901\) −10.0784 −0.335760
\(902\) 0 0
\(903\) 5.29326 31.6169i 0.176149 1.05215i
\(904\) 0 0
\(905\) 2.21598 3.83819i 0.0736617 0.127586i
\(906\) 0 0
\(907\) −24.5924 42.5954i −0.816579 1.41436i −0.908189 0.418561i \(-0.862535\pi\)
0.0916102 0.995795i \(-0.470799\pi\)
\(908\) 0 0
\(909\) 29.7529 + 10.2497i 0.986842 + 0.339960i
\(910\) 0 0
\(911\) 3.22635 + 5.58819i 0.106894 + 0.185145i 0.914510 0.404563i \(-0.132576\pi\)
−0.807617 + 0.589708i \(0.799243\pi\)
\(912\) 0 0
\(913\) 5.21090 9.02554i 0.172456 0.298702i
\(914\) 0 0
\(915\) −12.9157 + 4.82788i −0.426979 + 0.159605i
\(916\) 0 0
\(917\) 80.4851 2.65785
\(918\) 0 0
\(919\) −19.5552 −0.645067 −0.322533 0.946558i \(-0.604534\pi\)
−0.322533 + 0.946558i \(0.604534\pi\)
\(920\) 0 0
\(921\) −2.14681 + 0.802479i −0.0707398 + 0.0264426i
\(922\) 0 0
\(923\) 28.9361 50.1188i 0.952444 1.64968i
\(924\) 0 0
\(925\) 1.33641 + 2.31473i 0.0439410 + 0.0761080i
\(926\) 0 0
\(927\) 2.34791 + 12.0884i 0.0771154 + 0.397037i
\(928\) 0 0
\(929\) 25.5865 + 44.3171i 0.839466 + 1.45400i 0.890342 + 0.455293i \(0.150466\pi\)
−0.0508754 + 0.998705i \(0.516201\pi\)
\(930\) 0 0
\(931\) 47.9154 82.9919i 1.57036 2.71995i
\(932\) 0 0
\(933\) −1.41651 + 8.46090i −0.0463745 + 0.276998i
\(934\) 0 0
\(935\) 9.43196 0.308458
\(936\) 0 0
\(937\) −37.6627 −1.23039 −0.615193 0.788377i \(-0.710922\pi\)
−0.615193 + 0.788377i \(0.710922\pi\)
\(938\) 0 0
\(939\) −12.8498 10.5941i −0.419337 0.345727i
\(940\) 0 0
\(941\) 12.9073 22.3561i 0.420765 0.728787i −0.575249 0.817978i \(-0.695095\pi\)
0.996014 + 0.0891915i \(0.0284283\pi\)
\(942\) 0 0
\(943\) −9.10281 15.7665i −0.296428 0.513429i
\(944\) 0 0
\(945\) −13.0092 + 23.9474i −0.423190 + 0.779009i
\(946\) 0 0
\(947\) 0.919617 + 1.59282i 0.0298835 + 0.0517598i 0.880580 0.473897i \(-0.157153\pi\)
−0.850697 + 0.525657i \(0.823820\pi\)
\(948\) 0 0
\(949\) −12.0000 + 20.7846i −0.389536 + 0.674697i
\(950\) 0 0
\(951\) 16.4465 + 13.5595i 0.533314 + 0.439696i
\(952\) 0 0
\(953\) 39.7674 1.28819 0.644097 0.764944i \(-0.277233\pi\)
0.644097 + 0.764944i \(0.277233\pi\)
\(954\) 0 0
\(955\) −17.1625 −0.555364
\(956\) 0 0
\(957\) 1.41877 8.47441i 0.0458624 0.273939i
\(958\) 0 0
\(959\) 1.28402 2.22399i 0.0414632 0.0718163i
\(960\) 0 0
\(961\) −22.1089 38.2938i −0.713191 1.23528i
\(962\) 0 0
\(963\) −44.6871 + 38.8343i −1.44002 + 1.25142i
\(964\) 0 0
\(965\) −2.94761 5.10541i −0.0948869 0.164349i
\(966\) 0 0
\(967\) −4.85271 + 8.40514i −0.156053 + 0.270291i −0.933442 0.358729i \(-0.883210\pi\)
0.777389 + 0.629020i \(0.216544\pi\)
\(968\) 0 0
\(969\) −26.7529 + 10.0003i −0.859428 + 0.321255i
\(970\) 0 0
\(971\) 13.8247 0.443656 0.221828 0.975086i \(-0.428798\pi\)
0.221828 + 0.975086i \(0.428798\pi\)
\(972\) 0 0
\(973\) 56.0739 1.79765
\(974\) 0 0
\(975\) 6.19243 2.31473i 0.198316 0.0741308i
\(976\) 0 0
\(977\) −17.9885 + 31.1570i −0.575503 + 0.996801i 0.420484 + 0.907300i \(0.361860\pi\)
−0.995987 + 0.0895006i \(0.971473\pi\)
\(978\) 0 0
\(979\) 14.7005 + 25.4621i 0.469831 + 0.813771i
\(980\) 0 0
\(981\) −21.5303 + 18.7105i −0.687411 + 0.597379i
\(982\) 0 0
\(983\) 11.2745 + 19.5280i 0.359601 + 0.622847i 0.987894 0.155130i \(-0.0495796\pi\)
−0.628293 + 0.777976i \(0.716246\pi\)
\(984\) 0 0
\(985\) 10.9176 18.9099i 0.347865 0.602520i
\(986\) 0 0
\(987\) 13.8949 82.9953i 0.442281 2.64177i
\(988\) 0 0
\(989\) −17.4919 −0.556210
\(990\) 0 0
\(991\) −13.8767 −0.440809 −0.220405 0.975409i \(-0.570738\pi\)
−0.220405 + 0.975409i \(0.570738\pi\)
\(992\) 0 0
\(993\) −2.06784 1.70485i −0.0656210 0.0541019i
\(994\) 0 0
\(995\) 6.62438 11.4738i 0.210007 0.363743i
\(996\) 0 0
\(997\) −17.7529 30.7490i −0.562241 0.973829i −0.997301 0.0734279i \(-0.976606\pi\)
0.435060 0.900402i \(-0.356727\pi\)
\(998\) 0 0
\(999\) −6.62967 + 12.2039i −0.209753 + 0.386114i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 360.2.q.d.121.3 6
3.2 odd 2 1080.2.q.d.361.3 6
4.3 odd 2 720.2.q.j.481.1 6
9.2 odd 6 1080.2.q.d.721.3 6
9.4 even 3 3240.2.a.r.1.1 3
9.5 odd 6 3240.2.a.q.1.1 3
9.7 even 3 inner 360.2.q.d.241.3 yes 6
12.11 even 2 2160.2.q.j.1441.1 6
36.7 odd 6 720.2.q.j.241.1 6
36.11 even 6 2160.2.q.j.721.1 6
36.23 even 6 6480.2.a.bu.1.3 3
36.31 odd 6 6480.2.a.bx.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
360.2.q.d.121.3 6 1.1 even 1 trivial
360.2.q.d.241.3 yes 6 9.7 even 3 inner
720.2.q.j.241.1 6 36.7 odd 6
720.2.q.j.481.1 6 4.3 odd 2
1080.2.q.d.361.3 6 3.2 odd 2
1080.2.q.d.721.3 6 9.2 odd 6
2160.2.q.j.721.1 6 36.11 even 6
2160.2.q.j.1441.1 6 12.11 even 2
3240.2.a.q.1.1 3 9.5 odd 6
3240.2.a.r.1.1 3 9.4 even 3
6480.2.a.bu.1.3 3 36.23 even 6
6480.2.a.bx.1.3 3 36.31 odd 6