Properties

Label 360.2.q.a.241.1
Level $360$
Weight $2$
Character 360.241
Analytic conductor $2.875$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [360,2,Mod(121,360)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(360, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("360.121");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 360 = 2^{3} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 360.q (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.87461447277\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 241.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 360.241
Dual form 360.2.q.a.121.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.50000 - 0.866025i) q^{3} +(0.500000 + 0.866025i) q^{5} +(1.50000 + 2.59808i) q^{9} +O(q^{10})\) \(q+(-1.50000 - 0.866025i) q^{3} +(0.500000 + 0.866025i) q^{5} +(1.50000 + 2.59808i) q^{9} +(2.50000 - 4.33013i) q^{11} -1.73205i q^{15} +3.00000 q^{17} +5.00000 q^{19} +(-3.00000 - 5.19615i) q^{23} +(-0.500000 + 0.866025i) q^{25} -5.19615i q^{27} +(5.00000 - 8.66025i) q^{29} +(1.00000 + 1.73205i) q^{31} +(-7.50000 + 4.33013i) q^{33} +4.00000 q^{37} +(1.50000 + 2.59808i) q^{41} +(-1.50000 + 2.59808i) q^{43} +(-1.50000 + 2.59808i) q^{45} +(-2.00000 + 3.46410i) q^{47} +(3.50000 + 6.06218i) q^{49} +(-4.50000 - 2.59808i) q^{51} -6.00000 q^{53} +5.00000 q^{55} +(-7.50000 - 4.33013i) q^{57} +(1.50000 + 2.59808i) q^{59} +(-1.00000 + 1.73205i) q^{61} +(5.50000 + 9.52628i) q^{67} +10.3923i q^{69} -14.0000 q^{71} -15.0000 q^{73} +(1.50000 - 0.866025i) q^{75} +(-5.00000 + 8.66025i) q^{79} +(-4.50000 + 7.79423i) q^{81} +(6.00000 - 10.3923i) q^{83} +(1.50000 + 2.59808i) q^{85} +(-15.0000 + 8.66025i) q^{87} +14.0000 q^{89} -3.46410i q^{93} +(2.50000 + 4.33013i) q^{95} +(6.50000 - 11.2583i) q^{97} +15.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 3 q^{3} + q^{5} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 3 q^{3} + q^{5} + 3 q^{9} + 5 q^{11} + 6 q^{17} + 10 q^{19} - 6 q^{23} - q^{25} + 10 q^{29} + 2 q^{31} - 15 q^{33} + 8 q^{37} + 3 q^{41} - 3 q^{43} - 3 q^{45} - 4 q^{47} + 7 q^{49} - 9 q^{51} - 12 q^{53} + 10 q^{55} - 15 q^{57} + 3 q^{59} - 2 q^{61} + 11 q^{67} - 28 q^{71} - 30 q^{73} + 3 q^{75} - 10 q^{79} - 9 q^{81} + 12 q^{83} + 3 q^{85} - 30 q^{87} + 28 q^{89} + 5 q^{95} + 13 q^{97} + 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/360\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(217\) \(271\) \(281\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.50000 0.866025i −0.866025 0.500000i
\(4\) 0 0
\(5\) 0.500000 + 0.866025i 0.223607 + 0.387298i
\(6\) 0 0
\(7\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(8\) 0 0
\(9\) 1.50000 + 2.59808i 0.500000 + 0.866025i
\(10\) 0 0
\(11\) 2.50000 4.33013i 0.753778 1.30558i −0.192201 0.981356i \(-0.561563\pi\)
0.945979 0.324227i \(-0.105104\pi\)
\(12\) 0 0
\(13\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(14\) 0 0
\(15\) 1.73205i 0.447214i
\(16\) 0 0
\(17\) 3.00000 0.727607 0.363803 0.931476i \(-0.381478\pi\)
0.363803 + 0.931476i \(0.381478\pi\)
\(18\) 0 0
\(19\) 5.00000 1.14708 0.573539 0.819178i \(-0.305570\pi\)
0.573539 + 0.819178i \(0.305570\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3.00000 5.19615i −0.625543 1.08347i −0.988436 0.151642i \(-0.951544\pi\)
0.362892 0.931831i \(-0.381789\pi\)
\(24\) 0 0
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) 0 0
\(27\) 5.19615i 1.00000i
\(28\) 0 0
\(29\) 5.00000 8.66025i 0.928477 1.60817i 0.142605 0.989780i \(-0.454452\pi\)
0.785872 0.618389i \(-0.212214\pi\)
\(30\) 0 0
\(31\) 1.00000 + 1.73205i 0.179605 + 0.311086i 0.941745 0.336327i \(-0.109185\pi\)
−0.762140 + 0.647412i \(0.775851\pi\)
\(32\) 0 0
\(33\) −7.50000 + 4.33013i −1.30558 + 0.753778i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 4.00000 0.657596 0.328798 0.944400i \(-0.393356\pi\)
0.328798 + 0.944400i \(0.393356\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 1.50000 + 2.59808i 0.234261 + 0.405751i 0.959058 0.283211i \(-0.0913998\pi\)
−0.724797 + 0.688963i \(0.758066\pi\)
\(42\) 0 0
\(43\) −1.50000 + 2.59808i −0.228748 + 0.396203i −0.957437 0.288641i \(-0.906796\pi\)
0.728689 + 0.684844i \(0.240130\pi\)
\(44\) 0 0
\(45\) −1.50000 + 2.59808i −0.223607 + 0.387298i
\(46\) 0 0
\(47\) −2.00000 + 3.46410i −0.291730 + 0.505291i −0.974219 0.225605i \(-0.927564\pi\)
0.682489 + 0.730896i \(0.260898\pi\)
\(48\) 0 0
\(49\) 3.50000 + 6.06218i 0.500000 + 0.866025i
\(50\) 0 0
\(51\) −4.50000 2.59808i −0.630126 0.363803i
\(52\) 0 0
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 0 0
\(55\) 5.00000 0.674200
\(56\) 0 0
\(57\) −7.50000 4.33013i −0.993399 0.573539i
\(58\) 0 0
\(59\) 1.50000 + 2.59808i 0.195283 + 0.338241i 0.946993 0.321253i \(-0.104104\pi\)
−0.751710 + 0.659494i \(0.770771\pi\)
\(60\) 0 0
\(61\) −1.00000 + 1.73205i −0.128037 + 0.221766i −0.922916 0.385002i \(-0.874201\pi\)
0.794879 + 0.606768i \(0.207534\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 5.50000 + 9.52628i 0.671932 + 1.16382i 0.977356 + 0.211604i \(0.0678686\pi\)
−0.305424 + 0.952217i \(0.598798\pi\)
\(68\) 0 0
\(69\) 10.3923i 1.25109i
\(70\) 0 0
\(71\) −14.0000 −1.66149 −0.830747 0.556650i \(-0.812086\pi\)
−0.830747 + 0.556650i \(0.812086\pi\)
\(72\) 0 0
\(73\) −15.0000 −1.75562 −0.877809 0.479012i \(-0.840995\pi\)
−0.877809 + 0.479012i \(0.840995\pi\)
\(74\) 0 0
\(75\) 1.50000 0.866025i 0.173205 0.100000i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −5.00000 + 8.66025i −0.562544 + 0.974355i 0.434730 + 0.900561i \(0.356844\pi\)
−0.997274 + 0.0737937i \(0.976489\pi\)
\(80\) 0 0
\(81\) −4.50000 + 7.79423i −0.500000 + 0.866025i
\(82\) 0 0
\(83\) 6.00000 10.3923i 0.658586 1.14070i −0.322396 0.946605i \(-0.604488\pi\)
0.980982 0.194099i \(-0.0621783\pi\)
\(84\) 0 0
\(85\) 1.50000 + 2.59808i 0.162698 + 0.281801i
\(86\) 0 0
\(87\) −15.0000 + 8.66025i −1.60817 + 0.928477i
\(88\) 0 0
\(89\) 14.0000 1.48400 0.741999 0.670402i \(-0.233878\pi\)
0.741999 + 0.670402i \(0.233878\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 3.46410i 0.359211i
\(94\) 0 0
\(95\) 2.50000 + 4.33013i 0.256495 + 0.444262i
\(96\) 0 0
\(97\) 6.50000 11.2583i 0.659975 1.14311i −0.320647 0.947199i \(-0.603900\pi\)
0.980622 0.195911i \(-0.0627665\pi\)
\(98\) 0 0
\(99\) 15.0000 1.50756
\(100\) 0 0
\(101\) 6.00000 10.3923i 0.597022 1.03407i −0.396236 0.918149i \(-0.629684\pi\)
0.993258 0.115924i \(-0.0369830\pi\)
\(102\) 0 0
\(103\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −17.0000 −1.64345 −0.821726 0.569883i \(-0.806989\pi\)
−0.821726 + 0.569883i \(0.806989\pi\)
\(108\) 0 0
\(109\) −12.0000 −1.14939 −0.574696 0.818367i \(-0.694880\pi\)
−0.574696 + 0.818367i \(0.694880\pi\)
\(110\) 0 0
\(111\) −6.00000 3.46410i −0.569495 0.328798i
\(112\) 0 0
\(113\) 3.00000 + 5.19615i 0.282216 + 0.488813i 0.971930 0.235269i \(-0.0755971\pi\)
−0.689714 + 0.724082i \(0.742264\pi\)
\(114\) 0 0
\(115\) 3.00000 5.19615i 0.279751 0.484544i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −7.00000 12.1244i −0.636364 1.10221i
\(122\) 0 0
\(123\) 5.19615i 0.468521i
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 10.0000 0.887357 0.443678 0.896186i \(-0.353673\pi\)
0.443678 + 0.896186i \(0.353673\pi\)
\(128\) 0 0
\(129\) 4.50000 2.59808i 0.396203 0.228748i
\(130\) 0 0
\(131\) 2.00000 + 3.46410i 0.174741 + 0.302660i 0.940072 0.340977i \(-0.110758\pi\)
−0.765331 + 0.643637i \(0.777425\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 4.50000 2.59808i 0.387298 0.223607i
\(136\) 0 0
\(137\) −3.50000 + 6.06218i −0.299025 + 0.517927i −0.975913 0.218159i \(-0.929995\pi\)
0.676888 + 0.736086i \(0.263328\pi\)
\(138\) 0 0
\(139\) −3.50000 6.06218i −0.296866 0.514187i 0.678551 0.734553i \(-0.262608\pi\)
−0.975417 + 0.220366i \(0.929275\pi\)
\(140\) 0 0
\(141\) 6.00000 3.46410i 0.505291 0.291730i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 10.0000 0.830455
\(146\) 0 0
\(147\) 12.1244i 1.00000i
\(148\) 0 0
\(149\) −2.00000 3.46410i −0.163846 0.283790i 0.772399 0.635138i \(-0.219057\pi\)
−0.936245 + 0.351348i \(0.885723\pi\)
\(150\) 0 0
\(151\) −11.0000 + 19.0526i −0.895167 + 1.55048i −0.0615699 + 0.998103i \(0.519611\pi\)
−0.833597 + 0.552372i \(0.813723\pi\)
\(152\) 0 0
\(153\) 4.50000 + 7.79423i 0.363803 + 0.630126i
\(154\) 0 0
\(155\) −1.00000 + 1.73205i −0.0803219 + 0.139122i
\(156\) 0 0
\(157\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(158\) 0 0
\(159\) 9.00000 + 5.19615i 0.713746 + 0.412082i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 16.0000 1.25322 0.626608 0.779334i \(-0.284443\pi\)
0.626608 + 0.779334i \(0.284443\pi\)
\(164\) 0 0
\(165\) −7.50000 4.33013i −0.583874 0.337100i
\(166\) 0 0
\(167\) 11.0000 + 19.0526i 0.851206 + 1.47433i 0.880121 + 0.474749i \(0.157461\pi\)
−0.0289155 + 0.999582i \(0.509205\pi\)
\(168\) 0 0
\(169\) 6.50000 11.2583i 0.500000 0.866025i
\(170\) 0 0
\(171\) 7.50000 + 12.9904i 0.573539 + 0.993399i
\(172\) 0 0
\(173\) 1.00000 1.73205i 0.0760286 0.131685i −0.825505 0.564396i \(-0.809109\pi\)
0.901533 + 0.432710i \(0.142443\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 5.19615i 0.390567i
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) −4.00000 −0.297318 −0.148659 0.988889i \(-0.547496\pi\)
−0.148659 + 0.988889i \(0.547496\pi\)
\(182\) 0 0
\(183\) 3.00000 1.73205i 0.221766 0.128037i
\(184\) 0 0
\(185\) 2.00000 + 3.46410i 0.147043 + 0.254686i
\(186\) 0 0
\(187\) 7.50000 12.9904i 0.548454 0.949951i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −6.00000 + 10.3923i −0.434145 + 0.751961i −0.997225 0.0744412i \(-0.976283\pi\)
0.563081 + 0.826402i \(0.309616\pi\)
\(192\) 0 0
\(193\) −9.50000 16.4545i −0.683825 1.18442i −0.973805 0.227387i \(-0.926982\pi\)
0.289980 0.957033i \(-0.406351\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −8.00000 −0.569976 −0.284988 0.958531i \(-0.591990\pi\)
−0.284988 + 0.958531i \(0.591990\pi\)
\(198\) 0 0
\(199\) −24.0000 −1.70131 −0.850657 0.525720i \(-0.823796\pi\)
−0.850657 + 0.525720i \(0.823796\pi\)
\(200\) 0 0
\(201\) 19.0526i 1.34386i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −1.50000 + 2.59808i −0.104765 + 0.181458i
\(206\) 0 0
\(207\) 9.00000 15.5885i 0.625543 1.08347i
\(208\) 0 0
\(209\) 12.5000 21.6506i 0.864643 1.49761i
\(210\) 0 0
\(211\) −6.00000 10.3923i −0.413057 0.715436i 0.582165 0.813070i \(-0.302206\pi\)
−0.995222 + 0.0976347i \(0.968872\pi\)
\(212\) 0 0
\(213\) 21.0000 + 12.1244i 1.43890 + 0.830747i
\(214\) 0 0
\(215\) −3.00000 −0.204598
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 22.5000 + 12.9904i 1.52041 + 0.877809i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −1.00000 + 1.73205i −0.0669650 + 0.115987i −0.897564 0.440884i \(-0.854665\pi\)
0.830599 + 0.556871i \(0.187998\pi\)
\(224\) 0 0
\(225\) −3.00000 −0.200000
\(226\) 0 0
\(227\) −6.50000 + 11.2583i −0.431420 + 0.747242i −0.996996 0.0774548i \(-0.975321\pi\)
0.565576 + 0.824696i \(0.308654\pi\)
\(228\) 0 0
\(229\) 8.00000 + 13.8564i 0.528655 + 0.915657i 0.999442 + 0.0334101i \(0.0106368\pi\)
−0.470787 + 0.882247i \(0.656030\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −11.0000 −0.720634 −0.360317 0.932830i \(-0.617331\pi\)
−0.360317 + 0.932830i \(0.617331\pi\)
\(234\) 0 0
\(235\) −4.00000 −0.260931
\(236\) 0 0
\(237\) 15.0000 8.66025i 0.974355 0.562544i
\(238\) 0 0
\(239\) −3.00000 5.19615i −0.194054 0.336111i 0.752536 0.658551i \(-0.228830\pi\)
−0.946590 + 0.322440i \(0.895497\pi\)
\(240\) 0 0
\(241\) 11.5000 19.9186i 0.740780 1.28307i −0.211360 0.977408i \(-0.567789\pi\)
0.952141 0.305661i \(-0.0988773\pi\)
\(242\) 0 0
\(243\) 13.5000 7.79423i 0.866025 0.500000i
\(244\) 0 0
\(245\) −3.50000 + 6.06218i −0.223607 + 0.387298i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −18.0000 + 10.3923i −1.14070 + 0.658586i
\(250\) 0 0
\(251\) 11.0000 0.694314 0.347157 0.937807i \(-0.387147\pi\)
0.347157 + 0.937807i \(0.387147\pi\)
\(252\) 0 0
\(253\) −30.0000 −1.88608
\(254\) 0 0
\(255\) 5.19615i 0.325396i
\(256\) 0 0
\(257\) 15.5000 + 26.8468i 0.966863 + 1.67466i 0.704523 + 0.709681i \(0.251161\pi\)
0.262341 + 0.964975i \(0.415506\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 30.0000 1.85695
\(262\) 0 0
\(263\) 6.00000 10.3923i 0.369976 0.640817i −0.619586 0.784929i \(-0.712699\pi\)
0.989561 + 0.144112i \(0.0460326\pi\)
\(264\) 0 0
\(265\) −3.00000 5.19615i −0.184289 0.319197i
\(266\) 0 0
\(267\) −21.0000 12.1244i −1.28518 0.741999i
\(268\) 0 0
\(269\) −30.0000 −1.82913 −0.914566 0.404436i \(-0.867468\pi\)
−0.914566 + 0.404436i \(0.867468\pi\)
\(270\) 0 0
\(271\) 24.0000 1.45790 0.728948 0.684569i \(-0.240010\pi\)
0.728948 + 0.684569i \(0.240010\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2.50000 + 4.33013i 0.150756 + 0.261116i
\(276\) 0 0
\(277\) 7.00000 12.1244i 0.420589 0.728482i −0.575408 0.817867i \(-0.695157\pi\)
0.995997 + 0.0893846i \(0.0284900\pi\)
\(278\) 0 0
\(279\) −3.00000 + 5.19615i −0.179605 + 0.311086i
\(280\) 0 0
\(281\) −5.00000 + 8.66025i −0.298275 + 0.516627i −0.975741 0.218926i \(-0.929745\pi\)
0.677466 + 0.735554i \(0.263078\pi\)
\(282\) 0 0
\(283\) 2.00000 + 3.46410i 0.118888 + 0.205919i 0.919327 0.393494i \(-0.128734\pi\)
−0.800439 + 0.599414i \(0.795400\pi\)
\(284\) 0 0
\(285\) 8.66025i 0.512989i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) 0 0
\(291\) −19.5000 + 11.2583i −1.14311 + 0.659975i
\(292\) 0 0
\(293\) 5.00000 + 8.66025i 0.292103 + 0.505937i 0.974307 0.225225i \(-0.0723116\pi\)
−0.682204 + 0.731162i \(0.738978\pi\)
\(294\) 0 0
\(295\) −1.50000 + 2.59808i −0.0873334 + 0.151266i
\(296\) 0 0
\(297\) −22.5000 12.9904i −1.30558 0.753778i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −18.0000 + 10.3923i −1.03407 + 0.597022i
\(304\) 0 0
\(305\) −2.00000 −0.114520
\(306\) 0 0
\(307\) −7.00000 −0.399511 −0.199756 0.979846i \(-0.564015\pi\)
−0.199756 + 0.979846i \(0.564015\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −5.00000 8.66025i −0.283524 0.491078i 0.688726 0.725022i \(-0.258170\pi\)
−0.972250 + 0.233944i \(0.924837\pi\)
\(312\) 0 0
\(313\) −3.50000 + 6.06218i −0.197832 + 0.342655i −0.947825 0.318791i \(-0.896723\pi\)
0.749993 + 0.661445i \(0.230057\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −14.0000 + 24.2487i −0.786318 + 1.36194i 0.141890 + 0.989882i \(0.454682\pi\)
−0.928208 + 0.372061i \(0.878651\pi\)
\(318\) 0 0
\(319\) −25.0000 43.3013i −1.39973 2.42441i
\(320\) 0 0
\(321\) 25.5000 + 14.7224i 1.42327 + 0.821726i
\(322\) 0 0
\(323\) 15.0000 0.834622
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 18.0000 + 10.3923i 0.995402 + 0.574696i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −10.0000 + 17.3205i −0.549650 + 0.952021i 0.448649 + 0.893708i \(0.351905\pi\)
−0.998298 + 0.0583130i \(0.981428\pi\)
\(332\) 0 0
\(333\) 6.00000 + 10.3923i 0.328798 + 0.569495i
\(334\) 0 0
\(335\) −5.50000 + 9.52628i −0.300497 + 0.520476i
\(336\) 0 0
\(337\) 15.5000 + 26.8468i 0.844339 + 1.46244i 0.886194 + 0.463314i \(0.153340\pi\)
−0.0418554 + 0.999124i \(0.513327\pi\)
\(338\) 0 0
\(339\) 10.3923i 0.564433i
\(340\) 0 0
\(341\) 10.0000 0.541530
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −9.00000 + 5.19615i −0.484544 + 0.279751i
\(346\) 0 0
\(347\) 1.50000 + 2.59808i 0.0805242 + 0.139472i 0.903475 0.428640i \(-0.141007\pi\)
−0.822951 + 0.568112i \(0.807674\pi\)
\(348\) 0 0
\(349\) −16.0000 + 27.7128i −0.856460 + 1.48343i 0.0188232 + 0.999823i \(0.494008\pi\)
−0.875284 + 0.483610i \(0.839325\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −12.5000 + 21.6506i −0.665308 + 1.15235i 0.313894 + 0.949458i \(0.398366\pi\)
−0.979202 + 0.202889i \(0.934967\pi\)
\(354\) 0 0
\(355\) −7.00000 12.1244i −0.371521 0.643494i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −12.0000 −0.633336 −0.316668 0.948536i \(-0.602564\pi\)
−0.316668 + 0.948536i \(0.602564\pi\)
\(360\) 0 0
\(361\) 6.00000 0.315789
\(362\) 0 0
\(363\) 24.2487i 1.27273i
\(364\) 0 0
\(365\) −7.50000 12.9904i −0.392568 0.679948i
\(366\) 0 0
\(367\) 4.00000 6.92820i 0.208798 0.361649i −0.742538 0.669804i \(-0.766378\pi\)
0.951336 + 0.308155i \(0.0997115\pi\)
\(368\) 0 0
\(369\) −4.50000 + 7.79423i −0.234261 + 0.405751i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 13.0000 + 22.5167i 0.673114 + 1.16587i 0.977016 + 0.213165i \(0.0683772\pi\)
−0.303902 + 0.952703i \(0.598289\pi\)
\(374\) 0 0
\(375\) 1.50000 + 0.866025i 0.0774597 + 0.0447214i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −35.0000 −1.79783 −0.898915 0.438124i \(-0.855643\pi\)
−0.898915 + 0.438124i \(0.855643\pi\)
\(380\) 0 0
\(381\) −15.0000 8.66025i −0.768473 0.443678i
\(382\) 0 0
\(383\) −6.00000 10.3923i −0.306586 0.531022i 0.671027 0.741433i \(-0.265853\pi\)
−0.977613 + 0.210411i \(0.932520\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −9.00000 −0.457496
\(388\) 0 0
\(389\) 12.0000 20.7846i 0.608424 1.05382i −0.383076 0.923717i \(-0.625135\pi\)
0.991500 0.130105i \(-0.0415314\pi\)
\(390\) 0 0
\(391\) −9.00000 15.5885i −0.455150 0.788342i
\(392\) 0 0
\(393\) 6.92820i 0.349482i
\(394\) 0 0
\(395\) −10.0000 −0.503155
\(396\) 0 0
\(397\) 8.00000 0.401508 0.200754 0.979642i \(-0.435661\pi\)
0.200754 + 0.979642i \(0.435661\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 3.50000 + 6.06218i 0.174782 + 0.302731i 0.940086 0.340938i \(-0.110745\pi\)
−0.765304 + 0.643669i \(0.777411\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −9.00000 −0.447214
\(406\) 0 0
\(407\) 10.0000 17.3205i 0.495682 0.858546i
\(408\) 0 0
\(409\) 3.50000 + 6.06218i 0.173064 + 0.299755i 0.939490 0.342578i \(-0.111300\pi\)
−0.766426 + 0.642333i \(0.777967\pi\)
\(410\) 0 0
\(411\) 10.5000 6.06218i 0.517927 0.299025i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 12.0000 0.589057
\(416\) 0 0
\(417\) 12.1244i 0.593732i
\(418\) 0 0
\(419\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(420\) 0 0
\(421\) −19.0000 + 32.9090i −0.926003 + 1.60388i −0.136064 + 0.990700i \(0.543445\pi\)
−0.789940 + 0.613185i \(0.789888\pi\)
\(422\) 0 0
\(423\) −12.0000 −0.583460
\(424\) 0 0
\(425\) −1.50000 + 2.59808i −0.0727607 + 0.126025i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 28.0000 1.34871 0.674356 0.738406i \(-0.264421\pi\)
0.674356 + 0.738406i \(0.264421\pi\)
\(432\) 0 0
\(433\) 27.0000 1.29754 0.648769 0.760986i \(-0.275284\pi\)
0.648769 + 0.760986i \(0.275284\pi\)
\(434\) 0 0
\(435\) −15.0000 8.66025i −0.719195 0.415227i
\(436\) 0 0
\(437\) −15.0000 25.9808i −0.717547 1.24283i
\(438\) 0 0
\(439\) 7.00000 12.1244i 0.334092 0.578664i −0.649218 0.760602i \(-0.724904\pi\)
0.983310 + 0.181938i \(0.0582371\pi\)
\(440\) 0 0
\(441\) −10.5000 + 18.1865i −0.500000 + 0.866025i
\(442\) 0 0
\(443\) 14.5000 25.1147i 0.688916 1.19324i −0.283273 0.959039i \(-0.591420\pi\)
0.972189 0.234198i \(-0.0752464\pi\)
\(444\) 0 0
\(445\) 7.00000 + 12.1244i 0.331832 + 0.574750i
\(446\) 0 0
\(447\) 6.92820i 0.327693i
\(448\) 0 0
\(449\) 9.00000 0.424736 0.212368 0.977190i \(-0.431882\pi\)
0.212368 + 0.977190i \(0.431882\pi\)
\(450\) 0 0
\(451\) 15.0000 0.706322
\(452\) 0 0
\(453\) 33.0000 19.0526i 1.55048 0.895167i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 12.5000 21.6506i 0.584725 1.01277i −0.410184 0.912003i \(-0.634536\pi\)
0.994910 0.100771i \(-0.0321310\pi\)
\(458\) 0 0
\(459\) 15.5885i 0.727607i
\(460\) 0 0
\(461\) −2.00000 + 3.46410i −0.0931493 + 0.161339i −0.908835 0.417156i \(-0.863027\pi\)
0.815685 + 0.578496i \(0.196360\pi\)
\(462\) 0 0
\(463\) 2.00000 + 3.46410i 0.0929479 + 0.160990i 0.908750 0.417340i \(-0.137038\pi\)
−0.815802 + 0.578331i \(0.803704\pi\)
\(464\) 0 0
\(465\) 3.00000 1.73205i 0.139122 0.0803219i
\(466\) 0 0
\(467\) −11.0000 −0.509019 −0.254510 0.967070i \(-0.581914\pi\)
−0.254510 + 0.967070i \(0.581914\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 7.50000 + 12.9904i 0.344850 + 0.597298i
\(474\) 0 0
\(475\) −2.50000 + 4.33013i −0.114708 + 0.198680i
\(476\) 0 0
\(477\) −9.00000 15.5885i −0.412082 0.713746i
\(478\) 0 0
\(479\) −13.0000 + 22.5167i −0.593985 + 1.02881i 0.399704 + 0.916644i \(0.369113\pi\)
−0.993689 + 0.112168i \(0.964220\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 13.0000 0.590300
\(486\) 0 0
\(487\) 34.0000 1.54069 0.770344 0.637629i \(-0.220085\pi\)
0.770344 + 0.637629i \(0.220085\pi\)
\(488\) 0 0
\(489\) −24.0000 13.8564i −1.08532 0.626608i
\(490\) 0 0
\(491\) −7.50000 12.9904i −0.338470 0.586248i 0.645675 0.763612i \(-0.276576\pi\)
−0.984145 + 0.177365i \(0.943243\pi\)
\(492\) 0 0
\(493\) 15.0000 25.9808i 0.675566 1.17011i
\(494\) 0 0
\(495\) 7.50000 + 12.9904i 0.337100 + 0.583874i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 11.5000 + 19.9186i 0.514811 + 0.891678i 0.999852 + 0.0171872i \(0.00547113\pi\)
−0.485042 + 0.874491i \(0.661196\pi\)
\(500\) 0 0
\(501\) 38.1051i 1.70241i
\(502\) 0 0
\(503\) 34.0000 1.51599 0.757993 0.652263i \(-0.226180\pi\)
0.757993 + 0.652263i \(0.226180\pi\)
\(504\) 0 0
\(505\) 12.0000 0.533993
\(506\) 0 0
\(507\) −19.5000 + 11.2583i −0.866025 + 0.500000i
\(508\) 0 0
\(509\) −22.0000 38.1051i −0.975133 1.68898i −0.679496 0.733679i \(-0.737801\pi\)
−0.295637 0.955300i \(-0.595532\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 25.9808i 1.14708i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 10.0000 + 17.3205i 0.439799 + 0.761755i
\(518\) 0 0
\(519\) −3.00000 + 1.73205i −0.131685 + 0.0760286i
\(520\) 0 0
\(521\) −27.0000 −1.18289 −0.591446 0.806345i \(-0.701443\pi\)
−0.591446 + 0.806345i \(0.701443\pi\)
\(522\) 0 0
\(523\) −4.00000 −0.174908 −0.0874539 0.996169i \(-0.527873\pi\)
−0.0874539 + 0.996169i \(0.527873\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3.00000 + 5.19615i 0.130682 + 0.226348i
\(528\) 0 0
\(529\) −6.50000 + 11.2583i −0.282609 + 0.489493i
\(530\) 0 0
\(531\) −4.50000 + 7.79423i −0.195283 + 0.338241i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −8.50000 14.7224i −0.367487 0.636506i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 35.0000 1.50756
\(540\) 0 0
\(541\) 24.0000 1.03184 0.515920 0.856637i \(-0.327450\pi\)
0.515920 + 0.856637i \(0.327450\pi\)
\(542\) 0 0
\(543\) 6.00000 + 3.46410i 0.257485 + 0.148659i
\(544\) 0 0
\(545\) −6.00000 10.3923i −0.257012 0.445157i
\(546\) 0 0
\(547\) 4.50000 7.79423i 0.192406 0.333257i −0.753641 0.657286i \(-0.771704\pi\)
0.946047 + 0.324029i \(0.105038\pi\)
\(548\) 0 0
\(549\) −6.00000 −0.256074
\(550\) 0 0
\(551\) 25.0000 43.3013i 1.06504 1.84470i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 6.92820i 0.294086i
\(556\) 0 0
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −22.5000 + 12.9904i −0.949951 + 0.548454i
\(562\) 0 0
\(563\) −2.50000 4.33013i −0.105362 0.182493i 0.808524 0.588463i \(-0.200267\pi\)
−0.913886 + 0.405970i \(0.866934\pi\)
\(564\) 0 0
\(565\) −3.00000 + 5.19615i −0.126211 + 0.218604i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 7.50000 12.9904i 0.314416 0.544585i −0.664897 0.746935i \(-0.731525\pi\)
0.979313 + 0.202350i \(0.0648579\pi\)
\(570\) 0 0
\(571\) 1.50000 + 2.59808i 0.0627730 + 0.108726i 0.895704 0.444651i \(-0.146672\pi\)
−0.832931 + 0.553377i \(0.813339\pi\)
\(572\) 0 0
\(573\) 18.0000 10.3923i 0.751961 0.434145i
\(574\) 0 0
\(575\) 6.00000 0.250217
\(576\) 0 0
\(577\) −31.0000 −1.29055 −0.645273 0.763952i \(-0.723257\pi\)
−0.645273 + 0.763952i \(0.723257\pi\)
\(578\) 0 0
\(579\) 32.9090i 1.36765i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −15.0000 + 25.9808i −0.621237 + 1.07601i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 8.50000 14.7224i 0.350833 0.607660i −0.635563 0.772049i \(-0.719232\pi\)
0.986396 + 0.164389i \(0.0525653\pi\)
\(588\) 0 0
\(589\) 5.00000 + 8.66025i 0.206021 + 0.356840i
\(590\) 0 0
\(591\) 12.0000 + 6.92820i 0.493614 + 0.284988i
\(592\) 0 0
\(593\) 30.0000 1.23195 0.615976 0.787765i \(-0.288762\pi\)
0.615976 + 0.787765i \(0.288762\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 36.0000 + 20.7846i 1.47338 + 0.850657i
\(598\) 0 0
\(599\) −8.00000 13.8564i −0.326871 0.566157i 0.655018 0.755613i \(-0.272661\pi\)
−0.981889 + 0.189456i \(0.939328\pi\)
\(600\) 0 0
\(601\) 0.500000 0.866025i 0.0203954 0.0353259i −0.855648 0.517559i \(-0.826841\pi\)
0.876043 + 0.482233i \(0.160174\pi\)
\(602\) 0 0
\(603\) −16.5000 + 28.5788i −0.671932 + 1.16382i
\(604\) 0 0
\(605\) 7.00000 12.1244i 0.284590 0.492925i
\(606\) 0 0
\(607\) 16.0000 + 27.7128i 0.649420 + 1.12483i 0.983262 + 0.182199i \(0.0583216\pi\)
−0.333842 + 0.942629i \(0.608345\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −2.00000 −0.0807792 −0.0403896 0.999184i \(-0.512860\pi\)
−0.0403896 + 0.999184i \(0.512860\pi\)
\(614\) 0 0
\(615\) 4.50000 2.59808i 0.181458 0.104765i
\(616\) 0 0
\(617\) −12.5000 21.6506i −0.503231 0.871622i −0.999993 0.00373492i \(-0.998811\pi\)
0.496762 0.867887i \(-0.334522\pi\)
\(618\) 0 0
\(619\) 9.50000 16.4545i 0.381837 0.661361i −0.609488 0.792796i \(-0.708625\pi\)
0.991325 + 0.131434i \(0.0419582\pi\)
\(620\) 0 0
\(621\) −27.0000 + 15.5885i −1.08347 + 0.625543i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 0 0
\(627\) −37.5000 + 21.6506i −1.49761 + 0.864643i
\(628\) 0 0
\(629\) 12.0000 0.478471
\(630\) 0 0
\(631\) 2.00000 0.0796187 0.0398094 0.999207i \(-0.487325\pi\)
0.0398094 + 0.999207i \(0.487325\pi\)
\(632\) 0 0
\(633\) 20.7846i 0.826114i
\(634\) 0 0
\(635\) 5.00000 + 8.66025i 0.198419 + 0.343672i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −21.0000 36.3731i −0.830747 1.43890i
\(640\) 0 0
\(641\) −16.5000 + 28.5788i −0.651711 + 1.12880i 0.330997 + 0.943632i \(0.392615\pi\)
−0.982708 + 0.185164i \(0.940718\pi\)
\(642\) 0 0
\(643\) 20.5000 + 35.5070i 0.808441 + 1.40026i 0.913943 + 0.405842i \(0.133022\pi\)
−0.105502 + 0.994419i \(0.533645\pi\)
\(644\) 0 0
\(645\) 4.50000 + 2.59808i 0.177187 + 0.102299i
\(646\) 0 0
\(647\) 30.0000 1.17942 0.589711 0.807614i \(-0.299242\pi\)
0.589711 + 0.807614i \(0.299242\pi\)
\(648\) 0 0
\(649\) 15.0000 0.588802
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −17.0000 29.4449i −0.665261 1.15227i −0.979214 0.202828i \(-0.934987\pi\)
0.313953 0.949439i \(-0.398347\pi\)
\(654\) 0 0
\(655\) −2.00000 + 3.46410i −0.0781465 + 0.135354i
\(656\) 0 0
\(657\) −22.5000 38.9711i −0.877809 1.52041i
\(658\) 0 0
\(659\) −22.0000 + 38.1051i −0.856998 + 1.48436i 0.0177803 + 0.999842i \(0.494340\pi\)
−0.874779 + 0.484523i \(0.838993\pi\)
\(660\) 0 0
\(661\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −60.0000 −2.32321
\(668\) 0 0
\(669\) 3.00000 1.73205i 0.115987 0.0669650i
\(670\) 0 0
\(671\) 5.00000 + 8.66025i 0.193023 + 0.334325i
\(672\) 0 0
\(673\) 13.0000 22.5167i 0.501113 0.867953i −0.498886 0.866668i \(-0.666257\pi\)
0.999999 0.00128586i \(-0.000409302\pi\)
\(674\) 0 0
\(675\) 4.50000 + 2.59808i 0.173205 + 0.100000i
\(676\) 0 0
\(677\) −14.0000 + 24.2487i −0.538064 + 0.931954i 0.460945 + 0.887429i \(0.347511\pi\)
−0.999008 + 0.0445248i \(0.985823\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 19.5000 11.2583i 0.747242 0.431420i
\(682\) 0 0
\(683\) −13.0000 −0.497431 −0.248716 0.968577i \(-0.580008\pi\)
−0.248716 + 0.968577i \(0.580008\pi\)
\(684\) 0 0
\(685\) −7.00000 −0.267456
\(686\) 0 0
\(687\) 27.7128i 1.05731i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 4.00000 6.92820i 0.152167 0.263561i −0.779857 0.625958i \(-0.784708\pi\)
0.932024 + 0.362397i \(0.118041\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 3.50000 6.06218i 0.132763 0.229952i
\(696\) 0 0
\(697\) 4.50000 + 7.79423i 0.170450 + 0.295227i
\(698\) 0 0
\(699\) 16.5000 + 9.52628i 0.624087 + 0.360317i
\(700\) 0 0
\(701\) −6.00000 −0.226617 −0.113308 0.993560i \(-0.536145\pi\)
−0.113308 + 0.993560i \(0.536145\pi\)
\(702\) 0 0
\(703\) 20.0000 0.754314
\(704\) 0 0
\(705\) 6.00000 + 3.46410i 0.225973 + 0.130466i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 23.0000 39.8372i 0.863783 1.49612i −0.00446726 0.999990i \(-0.501422\pi\)
0.868250 0.496126i \(-0.165245\pi\)
\(710\) 0 0
\(711\) −30.0000 −1.12509
\(712\) 0 0
\(713\) 6.00000 10.3923i 0.224702 0.389195i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 10.3923i 0.388108i
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −34.5000 + 19.9186i −1.28307 + 0.740780i
\(724\) 0 0
\(725\) 5.00000 + 8.66025i 0.185695 + 0.321634i
\(726\) 0 0
\(727\) −8.00000 + 13.8564i −0.296704 + 0.513906i −0.975380 0.220532i \(-0.929221\pi\)
0.678676 + 0.734438i \(0.262554\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) −4.50000 + 7.79423i −0.166439 + 0.288280i
\(732\) 0 0
\(733\) −14.0000 24.2487i −0.517102 0.895647i −0.999803 0.0198613i \(-0.993678\pi\)
0.482701 0.875785i \(-0.339656\pi\)
\(734\) 0 0
\(735\) 10.5000 6.06218i 0.387298 0.223607i
\(736\) 0 0
\(737\) 55.0000 2.02595
\(738\) 0 0
\(739\) 5.00000 0.183928 0.0919640 0.995762i \(-0.470686\pi\)
0.0919640 + 0.995762i \(0.470686\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −17.0000 29.4449i −0.623670 1.08023i −0.988797 0.149270i \(-0.952308\pi\)
0.365127 0.930958i \(-0.381026\pi\)
\(744\) 0 0
\(745\) 2.00000 3.46410i 0.0732743 0.126915i
\(746\) 0 0
\(747\) 36.0000 1.31717
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −10.0000 17.3205i −0.364905 0.632034i 0.623856 0.781540i \(-0.285565\pi\)
−0.988761 + 0.149505i \(0.952232\pi\)
\(752\) 0 0
\(753\) −16.5000 9.52628i −0.601293 0.347157i
\(754\) 0 0
\(755\) −22.0000 −0.800662
\(756\) 0 0
\(757\) −26.0000 −0.944986 −0.472493 0.881334i \(-0.656646\pi\)
−0.472493 + 0.881334i \(0.656646\pi\)
\(758\) 0 0
\(759\) 45.0000 + 25.9808i 1.63340 + 0.943042i
\(760\) 0 0
\(761\) −5.00000 8.66025i −0.181250 0.313934i 0.761057 0.648686i \(-0.224681\pi\)
−0.942306 + 0.334752i \(0.891348\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −4.50000 + 7.79423i −0.162698 + 0.281801i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 27.0000 + 46.7654i 0.973645 + 1.68640i 0.684336 + 0.729167i \(0.260092\pi\)
0.289309 + 0.957236i \(0.406575\pi\)
\(770\) 0 0
\(771\) 53.6936i 1.93373i
\(772\) 0 0
\(773\) −30.0000 −1.07903 −0.539513 0.841978i \(-0.681391\pi\)
−0.539513 + 0.841978i \(0.681391\pi\)
\(774\) 0 0
\(775\) −2.00000 −0.0718421
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 7.50000 + 12.9904i 0.268715 + 0.465429i
\(780\) 0 0
\(781\) −35.0000 + 60.6218i −1.25240 + 2.16922i
\(782\) 0 0
\(783\) −45.0000 25.9808i −1.60817 0.928477i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −14.0000 24.2487i −0.499046 0.864373i 0.500953 0.865474i \(-0.332983\pi\)
−0.999999 + 0.00110111i \(0.999650\pi\)
\(788\) 0 0
\(789\) −18.0000 + 10.3923i −0.640817 + 0.369976i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0