Properties

Label 360.2.q.a
Level $360$
Weight $2$
Character orbit 360.q
Analytic conductor $2.875$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [360,2,Mod(121,360)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(360, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("360.121");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 360 = 2^{3} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 360.q (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.87461447277\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \zeta_{6} - 1) q^{3} + \zeta_{6} q^{5} + 3 \zeta_{6} q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \zeta_{6} - 1) q^{3} + \zeta_{6} q^{5} + 3 \zeta_{6} q^{9} + ( - 5 \zeta_{6} + 5) q^{11} + ( - 2 \zeta_{6} + 1) q^{15} + 3 q^{17} + 5 q^{19} - 6 \zeta_{6} q^{23} + (\zeta_{6} - 1) q^{25} + ( - 6 \zeta_{6} + 3) q^{27} + ( - 10 \zeta_{6} + 10) q^{29} + 2 \zeta_{6} q^{31} + (5 \zeta_{6} - 10) q^{33} + 4 q^{37} + 3 \zeta_{6} q^{41} + (3 \zeta_{6} - 3) q^{43} + (3 \zeta_{6} - 3) q^{45} + (4 \zeta_{6} - 4) q^{47} + 7 \zeta_{6} q^{49} + ( - 3 \zeta_{6} - 3) q^{51} - 6 q^{53} + 5 q^{55} + ( - 5 \zeta_{6} - 5) q^{57} + 3 \zeta_{6} q^{59} + (2 \zeta_{6} - 2) q^{61} + 11 \zeta_{6} q^{67} + (12 \zeta_{6} - 6) q^{69} - 14 q^{71} - 15 q^{73} + ( - \zeta_{6} + 2) q^{75} + (10 \zeta_{6} - 10) q^{79} + (9 \zeta_{6} - 9) q^{81} + ( - 12 \zeta_{6} + 12) q^{83} + 3 \zeta_{6} q^{85} + (10 \zeta_{6} - 20) q^{87} + 14 q^{89} + ( - 4 \zeta_{6} + 2) q^{93} + 5 \zeta_{6} q^{95} + ( - 13 \zeta_{6} + 13) q^{97} + 15 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 3 q^{3} + q^{5} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 3 q^{3} + q^{5} + 3 q^{9} + 5 q^{11} + 6 q^{17} + 10 q^{19} - 6 q^{23} - q^{25} + 10 q^{29} + 2 q^{31} - 15 q^{33} + 8 q^{37} + 3 q^{41} - 3 q^{43} - 3 q^{45} - 4 q^{47} + 7 q^{49} - 9 q^{51} - 12 q^{53} + 10 q^{55} - 15 q^{57} + 3 q^{59} - 2 q^{61} + 11 q^{67} - 28 q^{71} - 30 q^{73} + 3 q^{75} - 10 q^{79} - 9 q^{81} + 12 q^{83} + 3 q^{85} - 30 q^{87} + 28 q^{89} + 5 q^{95} + 13 q^{97} + 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/360\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(217\) \(271\) \(281\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
121.1
0.500000 0.866025i
0.500000 + 0.866025i
0 −1.50000 + 0.866025i 0 0.500000 0.866025i 0 0 0 1.50000 2.59808i 0
241.1 0 −1.50000 0.866025i 0 0.500000 + 0.866025i 0 0 0 1.50000 + 2.59808i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 360.2.q.a 2
3.b odd 2 1 1080.2.q.a 2
4.b odd 2 1 720.2.q.e 2
9.c even 3 1 inner 360.2.q.a 2
9.c even 3 1 3240.2.a.b 1
9.d odd 6 1 1080.2.q.a 2
9.d odd 6 1 3240.2.a.f 1
12.b even 2 1 2160.2.q.c 2
36.f odd 6 1 720.2.q.e 2
36.f odd 6 1 6480.2.a.e 1
36.h even 6 1 2160.2.q.c 2
36.h even 6 1 6480.2.a.q 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
360.2.q.a 2 1.a even 1 1 trivial
360.2.q.a 2 9.c even 3 1 inner
720.2.q.e 2 4.b odd 2 1
720.2.q.e 2 36.f odd 6 1
1080.2.q.a 2 3.b odd 2 1
1080.2.q.a 2 9.d odd 6 1
2160.2.q.c 2 12.b even 2 1
2160.2.q.c 2 36.h even 6 1
3240.2.a.b 1 9.c even 3 1
3240.2.a.f 1 9.d odd 6 1
6480.2.a.e 1 36.f odd 6 1
6480.2.a.q 1 36.h even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7} \) acting on \(S_{2}^{\mathrm{new}}(360, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 3T + 3 \) Copy content Toggle raw display
$5$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 5T + 25 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( (T - 3)^{2} \) Copy content Toggle raw display
$19$ \( (T - 5)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 6T + 36 \) Copy content Toggle raw display
$29$ \( T^{2} - 10T + 100 \) Copy content Toggle raw display
$31$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$37$ \( (T - 4)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$43$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$47$ \( T^{2} + 4T + 16 \) Copy content Toggle raw display
$53$ \( (T + 6)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$61$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$67$ \( T^{2} - 11T + 121 \) Copy content Toggle raw display
$71$ \( (T + 14)^{2} \) Copy content Toggle raw display
$73$ \( (T + 15)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} + 10T + 100 \) Copy content Toggle raw display
$83$ \( T^{2} - 12T + 144 \) Copy content Toggle raw display
$89$ \( (T - 14)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} - 13T + 169 \) Copy content Toggle raw display
show more
show less