Defining parameters
Level: | \( N \) | \(=\) | \( 360 = 2^{3} \cdot 3^{2} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 360.q (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 9 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(144\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(360, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 160 | 24 | 136 |
Cusp forms | 128 | 24 | 104 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(360, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
360.2.q.a | $2$ | $2.875$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(-3\) | \(1\) | \(0\) | \(q+(-1-\zeta_{6})q^{3}+\zeta_{6}q^{5}+3\zeta_{6}q^{9}+\cdots\) |
360.2.q.b | $4$ | $2.875$ | \(\Q(\zeta_{12})\) | None | \(0\) | \(0\) | \(2\) | \(-4\) | \(q-\zeta_{12}^{2}q^{3}+\zeta_{12}q^{5}+(-2+2\zeta_{12}+\cdots)q^{7}+\cdots\) |
360.2.q.c | $4$ | $2.875$ | \(\Q(\sqrt{-2}, \sqrt{-3})\) | None | \(0\) | \(2\) | \(2\) | \(-2\) | \(q+(\beta _{1}+\beta _{2}-\beta _{3})q^{3}+\beta _{2}q^{5}+(-1+\cdots)q^{7}+\cdots\) |
360.2.q.d | $6$ | $2.875$ | 6.0.954288.1 | None | \(0\) | \(-1\) | \(-3\) | \(5\) | \(q-\beta _{1}q^{3}+(-1-\beta _{3})q^{5}+(-\beta _{1}-\beta _{2}+\cdots)q^{7}+\cdots\) |
360.2.q.e | $8$ | $2.875$ | 8.0.856615824.2 | None | \(0\) | \(0\) | \(-4\) | \(1\) | \(q-\beta _{4}q^{3}-\beta _{1}q^{5}+(-\beta _{2}+\beta _{4})q^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(360, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(360, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(90, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(180, [\chi])\)\(^{\oplus 2}\)