Properties

Label 360.2.k
Level 360360
Weight 22
Character orbit 360.k
Rep. character χ360(181,)\chi_{360}(181,\cdot)
Character field Q\Q
Dimension 2020
Newform subspaces 66
Sturm bound 144144
Trace bound 77

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 360=23325 360 = 2^{3} \cdot 3^{2} \cdot 5
Weight: k k == 2 2
Character orbit: [χ][\chi] == 360.k (of order 22 and degree 11)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 8 8
Character field: Q\Q
Newform subspaces: 6 6
Sturm bound: 144144
Trace bound: 77
Distinguishing TpT_p: 77, 1111, 1717

Dimensions

The following table gives the dimensions of various subspaces of M2(360,[χ])M_{2}(360, [\chi]).

Total New Old
Modular forms 80 20 60
Cusp forms 64 20 44
Eisenstein series 16 0 16

Trace form

20q2q2+4q44q7+4q82q10+16q144q16+4q2012q22+20q2320q2516q264q28+8q3112q32+12q34+20q384q40+6q98+O(q100) 20 q - 2 q^{2} + 4 q^{4} - 4 q^{7} + 4 q^{8} - 2 q^{10} + 16 q^{14} - 4 q^{16} + 4 q^{20} - 12 q^{22} + 20 q^{23} - 20 q^{25} - 16 q^{26} - 4 q^{28} + 8 q^{31} - 12 q^{32} + 12 q^{34} + 20 q^{38} - 4 q^{40}+ \cdots - 6 q^{98}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(360,[χ])S_{2}^{\mathrm{new}}(360, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
360.2.k.a 360.k 8.b 22 2.8752.875 Q(1)\Q(\sqrt{-1}) None 360.2.k.a 2-2 00 00 8-8 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+(i1)q22iq4+iq54q7+q+(i-1)q^{2}-2 i q^{4}+i q^{5}-4 q^{7}+\cdots
360.2.k.b 360.k 8.b 22 2.8752.875 Q(1)\Q(\sqrt{-1}) None 120.2.k.a 2-2 00 00 44 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+(i1)q22iq4+iq5+2q7+q+(i-1)q^{2}-2 i q^{4}+i q^{5}+2 q^{7}+\cdots
360.2.k.c 360.k 8.b 22 2.8752.875 Q(1)\Q(\sqrt{-1}) None 360.2.k.a 22 00 00 8-8 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+(i+1)q2+2iq4+iq54q7+q+(i+1)q^{2}+2 i q^{4}+i q^{5}-4 q^{7}+\cdots
360.2.k.d 360.k 8.b 44 2.8752.875 Q(i,7)\Q(i, \sqrt{7}) None 360.2.k.d 00 00 00 88 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+β1q2+(1+β2)q4β3q5+2q7+q+\beta _{1}q^{2}+(1+\beta _{2})q^{4}-\beta _{3}q^{5}+2q^{7}+\cdots
360.2.k.e 360.k 8.b 44 2.8752.875 Q(ζ12)\Q(\zeta_{12}) None 40.2.d.a 22 00 00 4-4 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+(β2+β1)q2+(β3+β1)q4+q+(-\beta_{2}+\beta_1)q^{2}+(\beta_{3}+\beta_1)q^{4}+\cdots
360.2.k.f 360.k 8.b 66 2.8752.875 6.0.399424.1 None 120.2.k.b 2-2 00 00 44 SU(2)[C2]\mathrm{SU}(2)[C_{2}] qβ1q2+(β2β3)q4+β3q5+(1+)q7+q-\beta _{1}q^{2}+(\beta _{2}-\beta _{3})q^{4}+\beta _{3}q^{5}+(1+\cdots)q^{7}+\cdots

Decomposition of S2old(360,[χ])S_{2}^{\mathrm{old}}(360, [\chi]) into lower level spaces

S2old(360,[χ]) S_{2}^{\mathrm{old}}(360, [\chi]) \simeq S2new(24,[χ])S_{2}^{\mathrm{new}}(24, [\chi])4^{\oplus 4}\oplusS2new(40,[χ])S_{2}^{\mathrm{new}}(40, [\chi])3^{\oplus 3}\oplusS2new(72,[χ])S_{2}^{\mathrm{new}}(72, [\chi])2^{\oplus 2}\oplusS2new(120,[χ])S_{2}^{\mathrm{new}}(120, [\chi])2^{\oplus 2}