Properties

Label 360.2.f.a.289.1
Level $360$
Weight $2$
Character 360.289
Analytic conductor $2.875$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 360 = 2^{3} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 360.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.87461447277\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Defining polynomial: \(x^{2} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 289.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 360.289
Dual form 360.2.f.a.289.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-2.00000 - 1.00000i) q^{5} -2.00000i q^{7} +O(q^{10})\) \(q+(-2.00000 - 1.00000i) q^{5} -2.00000i q^{7} -2.00000 q^{11} -2.00000i q^{13} -6.00000i q^{17} -8.00000 q^{19} -4.00000i q^{23} +(3.00000 + 4.00000i) q^{25} +8.00000 q^{29} +(-2.00000 + 4.00000i) q^{35} -10.0000i q^{37} -2.00000 q^{41} +12.0000i q^{43} +3.00000 q^{49} +10.0000i q^{53} +(4.00000 + 2.00000i) q^{55} -6.00000 q^{59} +2.00000 q^{61} +(-2.00000 + 4.00000i) q^{65} -8.00000i q^{67} +4.00000 q^{71} -4.00000i q^{73} +4.00000i q^{77} +8.00000 q^{79} +4.00000i q^{83} +(-6.00000 + 12.0000i) q^{85} +6.00000 q^{89} -4.00000 q^{91} +(16.0000 + 8.00000i) q^{95} +8.00000i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 4q^{5} + O(q^{10}) \) \( 2q - 4q^{5} - 4q^{11} - 16q^{19} + 6q^{25} + 16q^{29} - 4q^{35} - 4q^{41} + 6q^{49} + 8q^{55} - 12q^{59} + 4q^{61} - 4q^{65} + 8q^{71} + 16q^{79} - 12q^{85} + 12q^{89} - 8q^{91} + 32q^{95} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/360\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(217\) \(271\) \(281\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.00000 1.00000i −0.894427 0.447214i
\(6\) 0 0
\(7\) 2.00000i 0.755929i −0.925820 0.377964i \(-0.876624\pi\)
0.925820 0.377964i \(-0.123376\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 0 0
\(13\) 2.00000i 0.554700i −0.960769 0.277350i \(-0.910544\pi\)
0.960769 0.277350i \(-0.0894562\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.00000i 1.45521i −0.685994 0.727607i \(-0.740633\pi\)
0.685994 0.727607i \(-0.259367\pi\)
\(18\) 0 0
\(19\) −8.00000 −1.83533 −0.917663 0.397360i \(-0.869927\pi\)
−0.917663 + 0.397360i \(0.869927\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.00000i 0.834058i −0.908893 0.417029i \(-0.863071\pi\)
0.908893 0.417029i \(-0.136929\pi\)
\(24\) 0 0
\(25\) 3.00000 + 4.00000i 0.600000 + 0.800000i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 8.00000 1.48556 0.742781 0.669534i \(-0.233506\pi\)
0.742781 + 0.669534i \(0.233506\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2.00000 + 4.00000i −0.338062 + 0.676123i
\(36\) 0 0
\(37\) 10.0000i 1.64399i −0.569495 0.821995i \(-0.692861\pi\)
0.569495 0.821995i \(-0.307139\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −2.00000 −0.312348 −0.156174 0.987730i \(-0.549916\pi\)
−0.156174 + 0.987730i \(0.549916\pi\)
\(42\) 0 0
\(43\) 12.0000i 1.82998i 0.403473 + 0.914991i \(0.367803\pi\)
−0.403473 + 0.914991i \(0.632197\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 0 0
\(49\) 3.00000 0.428571
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 10.0000i 1.37361i 0.726844 + 0.686803i \(0.240986\pi\)
−0.726844 + 0.686803i \(0.759014\pi\)
\(54\) 0 0
\(55\) 4.00000 + 2.00000i 0.539360 + 0.269680i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −6.00000 −0.781133 −0.390567 0.920575i \(-0.627721\pi\)
−0.390567 + 0.920575i \(0.627721\pi\)
\(60\) 0 0
\(61\) 2.00000 0.256074 0.128037 0.991769i \(-0.459132\pi\)
0.128037 + 0.991769i \(0.459132\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2.00000 + 4.00000i −0.248069 + 0.496139i
\(66\) 0 0
\(67\) 8.00000i 0.977356i −0.872464 0.488678i \(-0.837479\pi\)
0.872464 0.488678i \(-0.162521\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 4.00000 0.474713 0.237356 0.971423i \(-0.423719\pi\)
0.237356 + 0.971423i \(0.423719\pi\)
\(72\) 0 0
\(73\) 4.00000i 0.468165i −0.972217 0.234082i \(-0.924791\pi\)
0.972217 0.234082i \(-0.0752085\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 4.00000i 0.455842i
\(78\) 0 0
\(79\) 8.00000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 4.00000i 0.439057i 0.975606 + 0.219529i \(0.0704519\pi\)
−0.975606 + 0.219529i \(0.929548\pi\)
\(84\) 0 0
\(85\) −6.00000 + 12.0000i −0.650791 + 1.30158i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) 0 0
\(91\) −4.00000 −0.419314
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 16.0000 + 8.00000i 1.64157 + 0.820783i
\(96\) 0 0
\(97\) 8.00000i 0.812277i 0.913812 + 0.406138i \(0.133125\pi\)
−0.913812 + 0.406138i \(0.866875\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 2.00000i 0.197066i 0.995134 + 0.0985329i \(0.0314150\pi\)
−0.995134 + 0.0985329i \(0.968585\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.00000i 0.386695i −0.981130 0.193347i \(-0.938066\pi\)
0.981130 0.193347i \(-0.0619344\pi\)
\(108\) 0 0
\(109\) 6.00000 0.574696 0.287348 0.957826i \(-0.407226\pi\)
0.287348 + 0.957826i \(0.407226\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 2.00000i 0.188144i 0.995565 + 0.0940721i \(0.0299884\pi\)
−0.995565 + 0.0940721i \(0.970012\pi\)
\(114\) 0 0
\(115\) −4.00000 + 8.00000i −0.373002 + 0.746004i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −12.0000 −1.10004
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −2.00000 11.0000i −0.178885 0.983870i
\(126\) 0 0
\(127\) 18.0000i 1.59724i −0.601834 0.798621i \(-0.705563\pi\)
0.601834 0.798621i \(-0.294437\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 18.0000 1.57267 0.786334 0.617802i \(-0.211977\pi\)
0.786334 + 0.617802i \(0.211977\pi\)
\(132\) 0 0
\(133\) 16.0000i 1.38738i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 10.0000i 0.854358i −0.904167 0.427179i \(-0.859507\pi\)
0.904167 0.427179i \(-0.140493\pi\)
\(138\) 0 0
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 4.00000i 0.334497i
\(144\) 0 0
\(145\) −16.0000 8.00000i −1.32873 0.664364i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −12.0000 −0.983078 −0.491539 0.870855i \(-0.663566\pi\)
−0.491539 + 0.870855i \(0.663566\pi\)
\(150\) 0 0
\(151\) 16.0000 1.30206 0.651031 0.759051i \(-0.274337\pi\)
0.651031 + 0.759051i \(0.274337\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 14.0000i 1.11732i −0.829396 0.558661i \(-0.811315\pi\)
0.829396 0.558661i \(-0.188685\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −8.00000 −0.630488
\(162\) 0 0
\(163\) 16.0000i 1.25322i −0.779334 0.626608i \(-0.784443\pi\)
0.779334 0.626608i \(-0.215557\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 12.0000i 0.928588i −0.885681 0.464294i \(-0.846308\pi\)
0.885681 0.464294i \(-0.153692\pi\)
\(168\) 0 0
\(169\) 9.00000 0.692308
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 18.0000i 1.36851i −0.729241 0.684257i \(-0.760127\pi\)
0.729241 0.684257i \(-0.239873\pi\)
\(174\) 0 0
\(175\) 8.00000 6.00000i 0.604743 0.453557i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −22.0000 −1.64436 −0.822179 0.569230i \(-0.807242\pi\)
−0.822179 + 0.569230i \(0.807242\pi\)
\(180\) 0 0
\(181\) −14.0000 −1.04061 −0.520306 0.853980i \(-0.674182\pi\)
−0.520306 + 0.853980i \(0.674182\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −10.0000 + 20.0000i −0.735215 + 1.47043i
\(186\) 0 0
\(187\) 12.0000i 0.877527i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −12.0000 −0.868290 −0.434145 0.900843i \(-0.642949\pi\)
−0.434145 + 0.900843i \(0.642949\pi\)
\(192\) 0 0
\(193\) 4.00000i 0.287926i −0.989583 0.143963i \(-0.954015\pi\)
0.989583 0.143963i \(-0.0459847\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 6.00000i 0.427482i 0.976890 + 0.213741i \(0.0685649\pi\)
−0.976890 + 0.213741i \(0.931435\pi\)
\(198\) 0 0
\(199\) 8.00000 0.567105 0.283552 0.958957i \(-0.408487\pi\)
0.283552 + 0.958957i \(0.408487\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 16.0000i 1.12298i
\(204\) 0 0
\(205\) 4.00000 + 2.00000i 0.279372 + 0.139686i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 16.0000 1.10674
\(210\) 0 0
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 12.0000 24.0000i 0.818393 1.63679i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −12.0000 −0.807207
\(222\) 0 0
\(223\) 6.00000i 0.401790i −0.979613 0.200895i \(-0.935615\pi\)
0.979613 0.200895i \(-0.0643850\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 4.00000i 0.265489i 0.991150 + 0.132745i \(0.0423790\pi\)
−0.991150 + 0.132745i \(0.957621\pi\)
\(228\) 0 0
\(229\) −6.00000 −0.396491 −0.198246 0.980152i \(-0.563524\pi\)
−0.198246 + 0.980152i \(0.563524\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6.00000i 0.393073i 0.980497 + 0.196537i \(0.0629694\pi\)
−0.980497 + 0.196537i \(0.937031\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 20.0000 1.29369 0.646846 0.762620i \(-0.276088\pi\)
0.646846 + 0.762620i \(0.276088\pi\)
\(240\) 0 0
\(241\) −10.0000 −0.644157 −0.322078 0.946713i \(-0.604381\pi\)
−0.322078 + 0.946713i \(0.604381\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −6.00000 3.00000i −0.383326 0.191663i
\(246\) 0 0
\(247\) 16.0000i 1.01806i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 2.00000 0.126239 0.0631194 0.998006i \(-0.479895\pi\)
0.0631194 + 0.998006i \(0.479895\pi\)
\(252\) 0 0
\(253\) 8.00000i 0.502956i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 6.00000i 0.374270i 0.982334 + 0.187135i \(0.0599201\pi\)
−0.982334 + 0.187135i \(0.940080\pi\)
\(258\) 0 0
\(259\) −20.0000 −1.24274
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 12.0000i 0.739952i 0.929041 + 0.369976i \(0.120634\pi\)
−0.929041 + 0.369976i \(0.879366\pi\)
\(264\) 0 0
\(265\) 10.0000 20.0000i 0.614295 1.22859i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 24.0000 1.46331 0.731653 0.681677i \(-0.238749\pi\)
0.731653 + 0.681677i \(0.238749\pi\)
\(270\) 0 0
\(271\) −16.0000 −0.971931 −0.485965 0.873978i \(-0.661532\pi\)
−0.485965 + 0.873978i \(0.661532\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −6.00000 8.00000i −0.361814 0.482418i
\(276\) 0 0
\(277\) 6.00000i 0.360505i 0.983620 + 0.180253i \(0.0576915\pi\)
−0.983620 + 0.180253i \(0.942309\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 18.0000 1.07379 0.536895 0.843649i \(-0.319597\pi\)
0.536895 + 0.843649i \(0.319597\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 4.00000i 0.236113i
\(288\) 0 0
\(289\) −19.0000 −1.11765
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 22.0000i 1.28525i −0.766179 0.642627i \(-0.777845\pi\)
0.766179 0.642627i \(-0.222155\pi\)
\(294\) 0 0
\(295\) 12.0000 + 6.00000i 0.698667 + 0.349334i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −8.00000 −0.462652
\(300\) 0 0
\(301\) 24.0000 1.38334
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −4.00000 2.00000i −0.229039 0.114520i
\(306\) 0 0
\(307\) 20.0000i 1.14146i 0.821138 + 0.570730i \(0.193340\pi\)
−0.821138 + 0.570730i \(0.806660\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −12.0000 −0.680458 −0.340229 0.940343i \(-0.610505\pi\)
−0.340229 + 0.940343i \(0.610505\pi\)
\(312\) 0 0
\(313\) 4.00000i 0.226093i −0.993590 0.113047i \(-0.963939\pi\)
0.993590 0.113047i \(-0.0360610\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 18.0000i 1.01098i 0.862832 + 0.505490i \(0.168688\pi\)
−0.862832 + 0.505490i \(0.831312\pi\)
\(318\) 0 0
\(319\) −16.0000 −0.895828
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 48.0000i 2.67079i
\(324\) 0 0
\(325\) 8.00000 6.00000i 0.443760 0.332820i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 16.0000 0.879440 0.439720 0.898135i \(-0.355078\pi\)
0.439720 + 0.898135i \(0.355078\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −8.00000 + 16.0000i −0.437087 + 0.874173i
\(336\) 0 0
\(337\) 28.0000i 1.52526i 0.646837 + 0.762629i \(0.276092\pi\)
−0.646837 + 0.762629i \(0.723908\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 20.0000i 1.07990i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 28.0000i 1.50312i 0.659665 + 0.751559i \(0.270698\pi\)
−0.659665 + 0.751559i \(0.729302\pi\)
\(348\) 0 0
\(349\) 22.0000 1.17763 0.588817 0.808267i \(-0.299594\pi\)
0.588817 + 0.808267i \(0.299594\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 6.00000i 0.319348i 0.987170 + 0.159674i \(0.0510443\pi\)
−0.987170 + 0.159674i \(0.948956\pi\)
\(354\) 0 0
\(355\) −8.00000 4.00000i −0.424596 0.212298i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 16.0000 0.844448 0.422224 0.906492i \(-0.361250\pi\)
0.422224 + 0.906492i \(0.361250\pi\)
\(360\) 0 0
\(361\) 45.0000 2.36842
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −4.00000 + 8.00000i −0.209370 + 0.418739i
\(366\) 0 0
\(367\) 14.0000i 0.730794i 0.930852 + 0.365397i \(0.119067\pi\)
−0.930852 + 0.365397i \(0.880933\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 20.0000 1.03835
\(372\) 0 0
\(373\) 2.00000i 0.103556i −0.998659 0.0517780i \(-0.983511\pi\)
0.998659 0.0517780i \(-0.0164888\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 16.0000i 0.824042i
\(378\) 0 0
\(379\) 4.00000 0.205466 0.102733 0.994709i \(-0.467241\pi\)
0.102733 + 0.994709i \(0.467241\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 24.0000i 1.22634i −0.789950 0.613171i \(-0.789894\pi\)
0.789950 0.613171i \(-0.210106\pi\)
\(384\) 0 0
\(385\) 4.00000 8.00000i 0.203859 0.407718i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 12.0000 0.608424 0.304212 0.952604i \(-0.401607\pi\)
0.304212 + 0.952604i \(0.401607\pi\)
\(390\) 0 0
\(391\) −24.0000 −1.21373
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −16.0000 8.00000i −0.805047 0.402524i
\(396\) 0 0
\(397\) 6.00000i 0.301131i 0.988600 + 0.150566i \(0.0481095\pi\)
−0.988600 + 0.150566i \(0.951890\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −22.0000 −1.09863 −0.549314 0.835616i \(-0.685111\pi\)
−0.549314 + 0.835616i \(0.685111\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 20.0000i 0.991363i
\(408\) 0 0
\(409\) 10.0000 0.494468 0.247234 0.968956i \(-0.420478\pi\)
0.247234 + 0.968956i \(0.420478\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 12.0000i 0.590481i
\(414\) 0 0
\(415\) 4.00000 8.00000i 0.196352 0.392705i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 6.00000 0.293119 0.146560 0.989202i \(-0.453180\pi\)
0.146560 + 0.989202i \(0.453180\pi\)
\(420\) 0 0
\(421\) −26.0000 −1.26716 −0.633581 0.773676i \(-0.718416\pi\)
−0.633581 + 0.773676i \(0.718416\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 24.0000 18.0000i 1.16417 0.873128i
\(426\) 0 0
\(427\) 4.00000i 0.193574i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −16.0000 −0.770693 −0.385346 0.922772i \(-0.625918\pi\)
−0.385346 + 0.922772i \(0.625918\pi\)
\(432\) 0 0
\(433\) 12.0000i 0.576683i 0.957528 + 0.288342i \(0.0931039\pi\)
−0.957528 + 0.288342i \(0.906896\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 32.0000i 1.53077i
\(438\) 0 0
\(439\) −24.0000 −1.14546 −0.572729 0.819745i \(-0.694115\pi\)
−0.572729 + 0.819745i \(0.694115\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 36.0000i 1.71041i −0.518289 0.855206i \(-0.673431\pi\)
0.518289 0.855206i \(-0.326569\pi\)
\(444\) 0 0
\(445\) −12.0000 6.00000i −0.568855 0.284427i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −18.0000 −0.849473 −0.424736 0.905317i \(-0.639633\pi\)
−0.424736 + 0.905317i \(0.639633\pi\)
\(450\) 0 0
\(451\) 4.00000 0.188353
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 8.00000 + 4.00000i 0.375046 + 0.187523i
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 12.0000 0.558896 0.279448 0.960161i \(-0.409849\pi\)
0.279448 + 0.960161i \(0.409849\pi\)
\(462\) 0 0
\(463\) 22.0000i 1.02243i 0.859454 + 0.511213i \(0.170804\pi\)
−0.859454 + 0.511213i \(0.829196\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 36.0000i 1.66588i −0.553362 0.832941i \(-0.686655\pi\)
0.553362 0.832941i \(-0.313345\pi\)
\(468\) 0 0
\(469\) −16.0000 −0.738811
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 24.0000i 1.10352i
\(474\) 0 0
\(475\) −24.0000 32.0000i −1.10120 1.46826i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −28.0000 −1.27935 −0.639676 0.768644i \(-0.720932\pi\)
−0.639676 + 0.768644i \(0.720932\pi\)
\(480\) 0 0
\(481\) −20.0000 −0.911922
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 8.00000 16.0000i 0.363261 0.726523i
\(486\) 0 0
\(487\) 34.0000i 1.54069i 0.637629 + 0.770344i \(0.279915\pi\)
−0.637629 + 0.770344i \(0.720085\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 34.0000 1.53440 0.767199 0.641409i \(-0.221650\pi\)
0.767199 + 0.641409i \(0.221650\pi\)
\(492\) 0 0
\(493\) 48.0000i 2.16181i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 8.00000i 0.358849i
\(498\) 0 0
\(499\) 40.0000 1.79065 0.895323 0.445418i \(-0.146945\pi\)
0.895323 + 0.445418i \(0.146945\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 16.0000i 0.713405i 0.934218 + 0.356702i \(0.116099\pi\)
−0.934218 + 0.356702i \(0.883901\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −8.00000 −0.354594 −0.177297 0.984157i \(-0.556735\pi\)
−0.177297 + 0.984157i \(0.556735\pi\)
\(510\) 0 0
\(511\) −8.00000 −0.353899
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 2.00000 4.00000i 0.0881305 0.176261i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 26.0000 1.13908 0.569540 0.821963i \(-0.307121\pi\)
0.569540 + 0.821963i \(0.307121\pi\)
\(522\) 0 0
\(523\) 16.0000i 0.699631i 0.936819 + 0.349816i \(0.113756\pi\)
−0.936819 + 0.349816i \(0.886244\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 7.00000 0.304348
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 4.00000i 0.173259i
\(534\) 0 0
\(535\) −4.00000 + 8.00000i −0.172935 + 0.345870i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −6.00000 −0.258438
\(540\) 0 0
\(541\) 10.0000 0.429934 0.214967 0.976621i \(-0.431036\pi\)
0.214967 + 0.976621i \(0.431036\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −12.0000 6.00000i −0.514024 0.257012i
\(546\) 0 0
\(547\) 20.0000i 0.855138i −0.903983 0.427569i \(-0.859370\pi\)
0.903983 0.427569i \(-0.140630\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −64.0000 −2.72649
\(552\) 0 0
\(553\) 16.0000i 0.680389i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 18.0000i 0.762684i −0.924434 0.381342i \(-0.875462\pi\)
0.924434 0.381342i \(-0.124538\pi\)
\(558\) 0 0
\(559\) 24.0000 1.01509
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 36.0000i 1.51722i −0.651546 0.758610i \(-0.725879\pi\)
0.651546 0.758610i \(-0.274121\pi\)
\(564\) 0 0
\(565\) 2.00000 4.00000i 0.0841406 0.168281i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −42.0000 −1.76073 −0.880366 0.474295i \(-0.842703\pi\)
−0.880366 + 0.474295i \(0.842703\pi\)
\(570\) 0 0
\(571\) 16.0000 0.669579 0.334790 0.942293i \(-0.391335\pi\)
0.334790 + 0.942293i \(0.391335\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 16.0000 12.0000i 0.667246 0.500435i
\(576\) 0 0
\(577\) 16.0000i 0.666089i 0.942911 + 0.333044i \(0.108076\pi\)
−0.942911 + 0.333044i \(0.891924\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 8.00000 0.331896
\(582\) 0 0
\(583\) 20.0000i 0.828315i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 4.00000i 0.165098i −0.996587 0.0825488i \(-0.973694\pi\)
0.996587 0.0825488i \(-0.0263060\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 34.0000i 1.39621i 0.715994 + 0.698106i \(0.245974\pi\)
−0.715994 + 0.698106i \(0.754026\pi\)
\(594\) 0 0
\(595\) 24.0000 + 12.0000i 0.983904 + 0.491952i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 16.0000 0.653742 0.326871 0.945069i \(-0.394006\pi\)
0.326871 + 0.945069i \(0.394006\pi\)
\(600\) 0 0
\(601\) −30.0000 −1.22373 −0.611863 0.790964i \(-0.709580\pi\)
−0.611863 + 0.790964i \(0.709580\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 14.0000 + 7.00000i 0.569181 + 0.284590i
\(606\) 0 0
\(607\) 22.0000i 0.892952i −0.894795 0.446476i \(-0.852679\pi\)
0.894795 0.446476i \(-0.147321\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 14.0000i 0.565455i −0.959200 0.282727i \(-0.908761\pi\)
0.959200 0.282727i \(-0.0912392\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 10.0000i 0.402585i 0.979531 + 0.201292i \(0.0645141\pi\)
−0.979531 + 0.201292i \(0.935486\pi\)
\(618\) 0 0
\(619\) 20.0000 0.803868 0.401934 0.915669i \(-0.368338\pi\)
0.401934 + 0.915669i \(0.368338\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 12.0000i 0.480770i
\(624\) 0 0
\(625\) −7.00000 + 24.0000i −0.280000 + 0.960000i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −60.0000 −2.39236
\(630\) 0 0
\(631\) −40.0000 −1.59237 −0.796187 0.605050i \(-0.793153\pi\)
−0.796187 + 0.605050i \(0.793153\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −18.0000 + 36.0000i −0.714308 + 1.42862i
\(636\) 0 0
\(637\) 6.00000i 0.237729i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −18.0000 −0.710957 −0.355479 0.934684i \(-0.615682\pi\)
−0.355479 + 0.934684i \(0.615682\pi\)
\(642\) 0 0
\(643\) 24.0000i 0.946468i −0.880937 0.473234i \(-0.843087\pi\)
0.880937 0.473234i \(-0.156913\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 8.00000i 0.314512i 0.987558 + 0.157256i \(0.0502649\pi\)
−0.987558 + 0.157256i \(0.949735\pi\)
\(648\) 0 0
\(649\) 12.0000 0.471041
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 6.00000i 0.234798i 0.993085 + 0.117399i \(0.0374557\pi\)
−0.993085 + 0.117399i \(0.962544\pi\)
\(654\) 0 0
\(655\) −36.0000 18.0000i −1.40664 0.703318i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 30.0000 1.16863 0.584317 0.811525i \(-0.301362\pi\)
0.584317 + 0.811525i \(0.301362\pi\)
\(660\) 0 0
\(661\) 2.00000 0.0777910 0.0388955 0.999243i \(-0.487616\pi\)
0.0388955 + 0.999243i \(0.487616\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 16.0000 32.0000i 0.620453 1.24091i
\(666\) 0 0
\(667\) 32.0000i 1.23904i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −4.00000 −0.154418
\(672\) 0 0
\(673\) 20.0000i 0.770943i 0.922720 + 0.385472i \(0.125961\pi\)
−0.922720 + 0.385472i \(0.874039\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 30.0000i 1.15299i −0.817099 0.576497i \(-0.804419\pi\)
0.817099 0.576497i \(-0.195581\pi\)
\(678\) 0 0
\(679\) 16.0000 0.614024
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 20.0000i 0.765279i 0.923898 + 0.382639i \(0.124985\pi\)
−0.923898 + 0.382639i \(0.875015\pi\)
\(684\) 0 0
\(685\) −10.0000 + 20.0000i −0.382080 + 0.764161i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 20.0000 0.761939
\(690\) 0 0
\(691\) 48.0000 1.82601 0.913003 0.407953i \(-0.133757\pi\)
0.913003 + 0.407953i \(0.133757\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 8.00000 + 4.00000i 0.303457 + 0.151729i
\(696\) 0 0
\(697\) 12.0000i 0.454532i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 8.00000 0.302156 0.151078 0.988522i \(-0.451726\pi\)
0.151078 + 0.988522i \(0.451726\pi\)
\(702\) 0 0
\(703\) 80.0000i 3.01726i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −46.0000 −1.72757 −0.863783 0.503864i \(-0.831911\pi\)
−0.863783 + 0.503864i \(0.831911\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 4.00000 8.00000i 0.149592 0.299183i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 40.0000 1.49175 0.745874 0.666087i \(-0.232032\pi\)
0.745874 + 0.666087i \(0.232032\pi\)
\(720\) 0 0
\(721\) 4.00000 0.148968
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 24.0000 + 32.0000i 0.891338 + 1.18845i
\(726\) 0 0
\(727\) 30.0000i 1.11264i −0.830969 0.556319i \(-0.812213\pi\)
0.830969 0.556319i \(-0.187787\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 72.0000 2.66302
\(732\) 0 0
\(733\) 42.0000i 1.55131i 0.631160 + 0.775653i \(0.282579\pi\)
−0.631160 + 0.775653i \(0.717421\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 16.0000i 0.589368i
\(738\) 0 0
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) 24.0000 + 12.0000i 0.879292 + 0.439646i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −8.00000 −0.292314
\(750\) 0 0
\(751\) 8.00000 0.291924 0.145962 0.989290i \(-0.453372\pi\)
0.145962 + 0.989290i \(0.453372\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −32.0000 16.0000i −1.16460 0.582300i
\(756\) 0 0
\(757\) 38.0000i 1.38113i 0.723269 + 0.690567i \(0.242639\pi\)
−0.723269 + 0.690567i \(0.757361\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 2.00000 0.0724999 0.0362500 0.999343i \(-0.488459\pi\)
0.0362500 + 0.999343i \(0.488459\pi\)
\(762\) 0 0
\(763\) 12.0000i 0.434429i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 12.0000i 0.433295i
\(768\) 0 0
\(769\) −34.0000 −1.22607 −0.613036 0.790055i \(-0.710052\pi\)
−0.613036 + 0.790055i \(0.710052\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 38.0000i 1.36677i 0.730061 + 0.683383i \(0.239492\pi\)
−0.730061 + 0.683383i \(0.760508\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 16.0000 0.573259
\(780\) 0 0
\(781\) −8.00000 −0.286263
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −14.0000 + 28.0000i −0.499681 + 0.999363i
\(786\) 0 0
\(787\) 32.0000i 1.14068i 0.821410 + 0.570338i \(0.193188\pi\)
−0.821410 + 0.570338i \(0.806812\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 4.00000 0.142224
\(792\) 0 0
\(793\) 4.00000i 0.142044i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 30.0000i 1.06265i −0.847167 0.531327i \(-0.821693\pi\)
0.847167 0.531327i \(-0.178307\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 8.00000i 0.282314i
\(804\) 0 0
\(805\) 16.0000 + 8.00000i 0.563926 + 0.281963i
\(806\) 0 0
\(807\) 0 0