Properties

Label 360.2.f
Level $360$
Weight $2$
Character orbit 360.f
Rep. character $\chi_{360}(289,\cdot)$
Character field $\Q$
Dimension $8$
Newform subspaces $4$
Sturm bound $144$
Trace bound $11$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 360 = 2^{3} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 360.f (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(144\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(7\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(360, [\chi])\).

Total New Old
Modular forms 88 8 80
Cusp forms 56 8 48
Eisenstein series 32 0 32

Trace form

\( 8q - 2q^{5} + O(q^{10}) \) \( 8q - 2q^{5} + 4q^{11} + 8q^{19} + 12q^{25} + 20q^{29} + 4q^{35} - 8q^{41} - 24q^{49} - 16q^{55} - 36q^{59} - 8q^{61} - 20q^{65} - 8q^{71} + 16q^{79} + 12q^{85} + 24q^{89} - 56q^{91} + 40q^{95} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(360, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
360.2.f.a \(2\) \(2.875\) \(\Q(\sqrt{-1}) \) None \(0\) \(0\) \(-4\) \(0\) \(q+(-2+i)q^{5}+2iq^{7}-2q^{11}+2iq^{13}+\cdots\)
360.2.f.b \(2\) \(2.875\) \(\Q(\sqrt{-1}) \) None \(0\) \(0\) \(-4\) \(0\) \(q+(-2+i)q^{5}-4iq^{7}+4q^{11}-4iq^{13}+\cdots\)
360.2.f.c \(2\) \(2.875\) \(\Q(\sqrt{-1}) \) None \(0\) \(0\) \(2\) \(0\) \(q+(1+i)q^{5}-iq^{7}+4q^{11}+2iq^{13}+\cdots\)
360.2.f.d \(2\) \(2.875\) \(\Q(\sqrt{-1}) \) None \(0\) \(0\) \(4\) \(0\) \(q+(2+i)q^{5}+4iq^{7}-4q^{11}+4iq^{13}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(360, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(360, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(90, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(180, [\chi])\)\(^{\oplus 2}\)