Properties

Label 360.2.d.c
Level $360$
Weight $2$
Character orbit 360.d
Analytic conductor $2.875$
Analytic rank $0$
Dimension $4$
CM discriminant -15
Inner twists $8$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 360 = 2^{3} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 360.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.87461447277\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{5})\)
Defining polynomial: \(x^{4} - x^{3} + 2 x^{2} + x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\beta_{2} q^{2} + \beta_{3} q^{4} + ( -\beta_{1} - \beta_{2} ) q^{5} + ( 2 \beta_{1} - \beta_{2} ) q^{8} +O(q^{10})\) \( q -\beta_{2} q^{2} + \beta_{3} q^{4} + ( -\beta_{1} - \beta_{2} ) q^{5} + ( 2 \beta_{1} - \beta_{2} ) q^{8} + ( 2 + \beta_{3} ) q^{10} + ( -4 + \beta_{3} ) q^{16} + ( -4 \beta_{1} + 4 \beta_{2} ) q^{17} + ( -2 + 4 \beta_{3} ) q^{19} + ( 2 \beta_{1} - 3 \beta_{2} ) q^{20} + ( -2 \beta_{1} + 2 \beta_{2} ) q^{23} + 5 q^{25} -8 q^{31} + ( 2 \beta_{1} + 3 \beta_{2} ) q^{32} + ( 8 - 4 \beta_{3} ) q^{34} + ( 8 \beta_{1} - 2 \beta_{2} ) q^{38} + ( -4 + 3 \beta_{3} ) q^{40} + ( 4 - 2 \beta_{3} ) q^{46} + ( -6 \beta_{1} + 6 \beta_{2} ) q^{47} + 7 q^{49} -5 \beta_{2} q^{50} + ( 2 \beta_{1} + 2 \beta_{2} ) q^{53} + ( 4 - 8 \beta_{3} ) q^{61} + 8 \beta_{2} q^{62} + ( -4 - 3 \beta_{3} ) q^{64} + ( -8 \beta_{1} - 4 \beta_{2} ) q^{68} + ( -16 + 2 \beta_{3} ) q^{76} -16 q^{79} + ( 6 \beta_{1} + \beta_{2} ) q^{80} + ( -8 \beta_{1} - 8 \beta_{2} ) q^{83} + ( 4 - 8 \beta_{3} ) q^{85} + ( -4 \beta_{1} - 2 \beta_{2} ) q^{92} + ( 12 - 6 \beta_{3} ) q^{94} + ( 10 \beta_{1} - 10 \beta_{2} ) q^{95} -7 \beta_{2} q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q + 2q^{4} + O(q^{10}) \) \( 4q + 2q^{4} + 10q^{10} - 14q^{16} + 20q^{25} - 32q^{31} + 24q^{34} - 10q^{40} + 12q^{46} + 28q^{49} - 22q^{64} - 60q^{76} - 64q^{79} + 36q^{94} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{4} - x^{3} + 2 x^{2} + x + 1\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu^{2} - \nu + 1 \)
\(\beta_{2}\)\(=\)\( \nu^{3} - \nu^{2} + \nu + 1 \)
\(\beta_{3}\)\(=\)\( \nu^{3} - \nu^{2} + 3 \nu + 1 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(\beta_{3} - \beta_{2}\)\()/2\)
\(\nu^{2}\)\(=\)\((\)\(\beta_{3} - \beta_{2} + 2 \beta_{1} - 2\)\()/2\)
\(\nu^{3}\)\(=\)\(\beta_{2} + \beta_{1} - 2\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/360\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(217\) \(271\) \(281\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
109.1
−0.309017 + 0.535233i
−0.309017 0.535233i
0.809017 1.40126i
0.809017 + 1.40126i
−1.11803 0.866025i 0 0.500000 + 1.93649i −2.23607 0 0 1.11803 2.59808i 0 2.50000 + 1.93649i
109.2 −1.11803 + 0.866025i 0 0.500000 1.93649i −2.23607 0 0 1.11803 + 2.59808i 0 2.50000 1.93649i
109.3 1.11803 0.866025i 0 0.500000 1.93649i 2.23607 0 0 −1.11803 2.59808i 0 2.50000 1.93649i
109.4 1.11803 + 0.866025i 0 0.500000 + 1.93649i 2.23607 0 0 −1.11803 + 2.59808i 0 2.50000 + 1.93649i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
15.d odd 2 1 CM by \(\Q(\sqrt{-15}) \)
3.b odd 2 1 inner
5.b even 2 1 inner
8.b even 2 1 inner
24.h odd 2 1 inner
40.f even 2 1 inner
120.i odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 360.2.d.c 4
3.b odd 2 1 inner 360.2.d.c 4
4.b odd 2 1 1440.2.d.d 4
5.b even 2 1 inner 360.2.d.c 4
5.c odd 4 2 1800.2.k.l 4
8.b even 2 1 inner 360.2.d.c 4
8.d odd 2 1 1440.2.d.d 4
12.b even 2 1 1440.2.d.d 4
15.d odd 2 1 CM 360.2.d.c 4
15.e even 4 2 1800.2.k.l 4
20.d odd 2 1 1440.2.d.d 4
20.e even 4 2 7200.2.k.n 4
24.f even 2 1 1440.2.d.d 4
24.h odd 2 1 inner 360.2.d.c 4
40.e odd 2 1 1440.2.d.d 4
40.f even 2 1 inner 360.2.d.c 4
40.i odd 4 2 1800.2.k.l 4
40.k even 4 2 7200.2.k.n 4
60.h even 2 1 1440.2.d.d 4
60.l odd 4 2 7200.2.k.n 4
120.i odd 2 1 inner 360.2.d.c 4
120.m even 2 1 1440.2.d.d 4
120.q odd 4 2 7200.2.k.n 4
120.w even 4 2 1800.2.k.l 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
360.2.d.c 4 1.a even 1 1 trivial
360.2.d.c 4 3.b odd 2 1 inner
360.2.d.c 4 5.b even 2 1 inner
360.2.d.c 4 8.b even 2 1 inner
360.2.d.c 4 15.d odd 2 1 CM
360.2.d.c 4 24.h odd 2 1 inner
360.2.d.c 4 40.f even 2 1 inner
360.2.d.c 4 120.i odd 2 1 inner
1440.2.d.d 4 4.b odd 2 1
1440.2.d.d 4 8.d odd 2 1
1440.2.d.d 4 12.b even 2 1
1440.2.d.d 4 20.d odd 2 1
1440.2.d.d 4 24.f even 2 1
1440.2.d.d 4 40.e odd 2 1
1440.2.d.d 4 60.h even 2 1
1440.2.d.d 4 120.m even 2 1
1800.2.k.l 4 5.c odd 4 2
1800.2.k.l 4 15.e even 4 2
1800.2.k.l 4 40.i odd 4 2
1800.2.k.l 4 120.w even 4 2
7200.2.k.n 4 20.e even 4 2
7200.2.k.n 4 40.k even 4 2
7200.2.k.n 4 60.l odd 4 2
7200.2.k.n 4 120.q odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(360, [\chi])\):

\( T_{7} \)
\( T_{11} \)
\( T_{13} \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 4 - T^{2} + T^{4} \)
$3$ \( T^{4} \)
$5$ \( ( -5 + T^{2} )^{2} \)
$7$ \( T^{4} \)
$11$ \( T^{4} \)
$13$ \( T^{4} \)
$17$ \( ( 48 + T^{2} )^{2} \)
$19$ \( ( 60 + T^{2} )^{2} \)
$23$ \( ( 12 + T^{2} )^{2} \)
$29$ \( T^{4} \)
$31$ \( ( 8 + T )^{4} \)
$37$ \( T^{4} \)
$41$ \( T^{4} \)
$43$ \( T^{4} \)
$47$ \( ( 108 + T^{2} )^{2} \)
$53$ \( ( -20 + T^{2} )^{2} \)
$59$ \( T^{4} \)
$61$ \( ( 240 + T^{2} )^{2} \)
$67$ \( T^{4} \)
$71$ \( T^{4} \)
$73$ \( T^{4} \)
$79$ \( ( 16 + T )^{4} \)
$83$ \( ( -320 + T^{2} )^{2} \)
$89$ \( T^{4} \)
$97$ \( T^{4} \)
show more
show less