Properties

Label 360.2.d
Level $360$
Weight $2$
Character orbit 360.d
Rep. character $\chi_{360}(109,\cdot)$
Character field $\Q$
Dimension $28$
Newform subspaces $6$
Sturm bound $144$
Trace bound $4$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 360 = 2^{3} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 360.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 40 \)
Character field: \(\Q\)
Newform subspaces: \( 6 \)
Sturm bound: \(144\)
Trace bound: \(4\)
Distinguishing \(T_p\): \(7\), \(11\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(360, [\chi])\).

Total New Old
Modular forms 80 32 48
Cusp forms 64 28 36
Eisenstein series 16 4 12

Trace form

\( 28 q - 4 q^{10} + 8 q^{14} + 12 q^{16} - 8 q^{20} - 4 q^{25} + 28 q^{26} + 8 q^{34} - 20 q^{40} + 8 q^{41} - 20 q^{44} + 28 q^{46} - 20 q^{49} - 24 q^{50} - 8 q^{55} - 52 q^{56} - 36 q^{64} + 24 q^{65}+ \cdots - 40 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(360, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
360.2.d.a 360.d 40.f $4$ $2.875$ \(\Q(\sqrt{-2}, \sqrt{-5})\) \(\Q(\sqrt{-30}) \) 360.2.d.a \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-\beta _{1}q^{2}-2q^{4}+\beta _{2}q^{5}+2\beta _{1}q^{8}+\cdots\)
360.2.d.b 360.d 40.f $4$ $2.875$ \(\Q(\sqrt{2}, \sqrt{-3})\) None 40.2.f.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(-1+\beta _{3})q^{4}+(-\beta _{2}+\beta _{3})q^{5}+\cdots\)
360.2.d.c 360.d 40.f $4$ $2.875$ \(\Q(\sqrt{-3}, \sqrt{5})\) \(\Q(\sqrt{-15}) \) 360.2.d.c \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-\beta _{2}q^{2}+\beta _{3}q^{4}+(-\beta _{1}-\beta _{2})q^{5}+\cdots\)
360.2.d.d 360.d 40.f $4$ $2.875$ \(\Q(\sqrt{2}, \sqrt{-3})\) \(\Q(\sqrt{-6}) \) 360.2.d.d \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-\beta _{1}q^{2}+2q^{4}+(\beta _{1}+\beta _{2})q^{5}+2\beta _{3}q^{7}+\cdots\)
360.2.d.e 360.d 40.f $6$ $2.875$ 6.0.839056.1 None 120.2.d.a \(-1\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{3}q^{2}+(-\beta _{1}-\beta _{2})q^{4}+(\beta _{1}+\beta _{2}+\cdots)q^{5}+\cdots\)
360.2.d.f 360.d 40.f $6$ $2.875$ 6.0.839056.1 None 120.2.d.a \(1\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{2}q^{2}+(\beta _{1}-\beta _{3})q^{4}+(\beta _{2}-\beta _{3})q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(360, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(360, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 2}\)