Properties

Label 360.2.br.a
Level $360$
Weight $2$
Character orbit 360.br
Analytic conductor $2.875$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 360 = 2^{3} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 360.br (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.87461447277\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
Defining polynomial: \(x^{4} - x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -1 - \zeta_{12}^{3} ) q^{2} + ( -\zeta_{12} - \zeta_{12}^{3} ) q^{3} + 2 \zeta_{12}^{3} q^{4} + ( 2 \zeta_{12} - \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{5} + ( -2 + \zeta_{12} + \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{6} + ( -2 - 2 \zeta_{12} - \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{7} + ( 2 - 2 \zeta_{12}^{3} ) q^{8} + ( -3 + 3 \zeta_{12}^{2} ) q^{9} +O(q^{10})\) \( q + ( -1 - \zeta_{12}^{3} ) q^{2} + ( -\zeta_{12} - \zeta_{12}^{3} ) q^{3} + 2 \zeta_{12}^{3} q^{4} + ( 2 \zeta_{12} - \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{5} + ( -2 + \zeta_{12} + \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{6} + ( -2 - 2 \zeta_{12} - \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{7} + ( 2 - 2 \zeta_{12}^{3} ) q^{8} + ( -3 + 3 \zeta_{12}^{2} ) q^{9} + ( -3 \zeta_{12} - \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{10} + ( -2 + 2 \zeta_{12}^{2} ) q^{11} + ( 4 - 2 \zeta_{12}^{2} ) q^{12} + ( -2 + 4 \zeta_{12} - 2 \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{13} + ( 3 + \zeta_{12} + 3 \zeta_{12}^{2} ) q^{14} + ( -2 - \zeta_{12} - 2 \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{15} -4 q^{16} + ( -3 + 3 \zeta_{12}^{3} ) q^{17} + ( 3 + 3 \zeta_{12} - 3 \zeta_{12}^{2} ) q^{18} + ( -3 - 2 \zeta_{12} + \zeta_{12}^{3} ) q^{19} + ( 2 \zeta_{12} + 4 \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{20} + ( 4 + \zeta_{12} + \zeta_{12}^{2} + 4 \zeta_{12}^{3} ) q^{21} + ( 2 + 2 \zeta_{12} - 2 \zeta_{12}^{2} ) q^{22} + ( -1 + 2 \zeta_{12} - \zeta_{12}^{2} - \zeta_{12}^{3} ) q^{23} + ( -4 - 2 \zeta_{12} + 2 \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{24} + ( 3 - 4 \zeta_{12} - 3 \zeta_{12}^{2} ) q^{25} + ( 4 - 6 \zeta_{12} - 2 \zeta_{12}^{2} + 6 \zeta_{12}^{3} ) q^{26} + ( 6 \zeta_{12} - 3 \zeta_{12}^{3} ) q^{27} + ( -2 + 2 \zeta_{12} - 4 \zeta_{12}^{2} - 6 \zeta_{12}^{3} ) q^{28} + ( 3 - 2 \zeta_{12} + 3 \zeta_{12}^{2} ) q^{29} + ( 3 - \zeta_{12} + 3 \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{30} + ( 3 \zeta_{12} + 3 \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{31} + ( 4 + 4 \zeta_{12}^{3} ) q^{32} + ( 4 \zeta_{12} - 2 \zeta_{12}^{3} ) q^{33} + 6 q^{34} + ( -5 - 3 \zeta_{12} + 9 \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{35} -6 \zeta_{12} q^{36} + ( 1 - 4 \zeta_{12} + 4 \zeta_{12}^{2} - \zeta_{12}^{3} ) q^{37} + ( 2 + 2 \zeta_{12} + 2 \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{38} + ( -6 \zeta_{12}^{2} + 6 \zeta_{12}^{3} ) q^{39} + ( 2 \zeta_{12} - 6 \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{40} + ( -4 - 3 \zeta_{12} + 2 \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{41} + ( 1 - 2 \zeta_{12}^{2} - 9 \zeta_{12}^{3} ) q^{42} + ( -5 - 5 \zeta_{12} + \zeta_{12}^{2} + 4 \zeta_{12}^{3} ) q^{43} -4 \zeta_{12} q^{44} + ( 3 + 6 \zeta_{12}^{3} ) q^{45} + ( 2 - 3 \zeta_{12} - \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{46} + ( -3 + 3 \zeta_{12} - 3 \zeta_{12}^{3} ) q^{47} + ( 4 \zeta_{12} + 4 \zeta_{12}^{3} ) q^{48} + ( 6 + 7 \zeta_{12} - 3 \zeta_{12}^{2} - 7 \zeta_{12}^{3} ) q^{49} + ( -7 + \zeta_{12} + 7 \zeta_{12}^{2} ) q^{50} + ( 6 + 3 \zeta_{12} - 3 \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{51} + ( -4 + 4 \zeta_{12} + 8 \zeta_{12}^{2} - 8 \zeta_{12}^{3} ) q^{52} + ( 3 + 6 \zeta_{12} - 6 \zeta_{12}^{2} - 3 \zeta_{12}^{3} ) q^{53} + ( 3 - 6 \zeta_{12} - 6 \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{54} + ( 2 + 4 \zeta_{12}^{3} ) q^{55} + ( -2 - 6 \zeta_{12} + 2 \zeta_{12}^{2} + 12 \zeta_{12}^{3} ) q^{56} + ( 3 \zeta_{12} + 3 \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{57} + ( -5 + 5 \zeta_{12} - \zeta_{12}^{2} - 6 \zeta_{12}^{3} ) q^{58} + ( -6 + 7 \zeta_{12} + 3 \zeta_{12}^{2} - 7 \zeta_{12}^{3} ) q^{59} + ( -2 + 4 \zeta_{12} - 2 \zeta_{12}^{2} - 8 \zeta_{12}^{3} ) q^{60} + ( -5 - 6 \zeta_{12} - 5 \zeta_{12}^{2} ) q^{61} + ( 6 - 6 \zeta_{12}^{2} - 6 \zeta_{12}^{3} ) q^{62} + ( 9 - 3 \zeta_{12} - 6 \zeta_{12}^{2} - 6 \zeta_{12}^{3} ) q^{63} -8 \zeta_{12}^{3} q^{64} + ( 6 - 10 \zeta_{12} + 2 \zeta_{12}^{3} ) q^{65} + ( 2 - 4 \zeta_{12} - 4 \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{66} + ( -1 - 5 \zeta_{12} - 4 \zeta_{12}^{2} + 4 \zeta_{12}^{3} ) q^{67} + ( -6 - 6 \zeta_{12}^{3} ) q^{68} + ( -3 \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{69} + ( 5 + 12 \zeta_{12} - 6 \zeta_{12}^{2} - 7 \zeta_{12}^{3} ) q^{70} -12 \zeta_{12}^{3} q^{71} + ( -6 + 6 \zeta_{12} + 6 \zeta_{12}^{2} ) q^{72} + ( -8 - 6 \zeta_{12} + 6 \zeta_{12}^{2} + 8 \zeta_{12}^{3} ) q^{73} + ( -6 + 8 \zeta_{12} - 4 \zeta_{12}^{3} ) q^{74} + ( -4 - 6 \zeta_{12} + 8 \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{75} + ( 2 - 4 \zeta_{12}^{2} - 6 \zeta_{12}^{3} ) q^{76} + ( 6 - 2 \zeta_{12} - 4 \zeta_{12}^{2} - 4 \zeta_{12}^{3} ) q^{77} + ( 6 - 6 \zeta_{12} + 6 \zeta_{12}^{2} ) q^{78} + ( -3 + 3 \zeta_{12} - 3 \zeta_{12}^{2} ) q^{79} + ( -8 \zeta_{12} + 4 \zeta_{12}^{2} + 8 \zeta_{12}^{3} ) q^{80} -9 \zeta_{12}^{2} q^{81} + ( 4 + 5 \zeta_{12} + \zeta_{12}^{2} - \zeta_{12}^{3} ) q^{82} + ( -4 + 4 \zeta_{12} - 5 \zeta_{12}^{2} - 9 \zeta_{12}^{3} ) q^{83} + ( -10 - 2 \zeta_{12} + 2 \zeta_{12}^{2} + 10 \zeta_{12}^{3} ) q^{84} + ( -3 \zeta_{12} + 9 \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{85} + ( 4 + 6 \zeta_{12} + 4 \zeta_{12}^{2} ) q^{86} + ( -2 + 4 \zeta_{12}^{2} - 9 \zeta_{12}^{3} ) q^{87} + ( -4 + 4 \zeta_{12} + 4 \zeta_{12}^{2} ) q^{88} + ( 6 - 10 \zeta_{12} + 5 \zeta_{12}^{3} ) q^{89} + ( 3 - 9 \zeta_{12}^{3} ) q^{90} + ( -8 + 16 \zeta_{12}^{2} - 6 \zeta_{12}^{3} ) q^{91} + ( -2 + 2 \zeta_{12} + 4 \zeta_{12}^{2} - 4 \zeta_{12}^{3} ) q^{92} + ( 9 + 3 \zeta_{12} - 9 \zeta_{12}^{2} - 6 \zeta_{12}^{3} ) q^{93} + ( 3 - 3 \zeta_{12} - 3 \zeta_{12}^{2} + 6 \zeta_{12}^{3} ) q^{94} + ( -4 - 5 \zeta_{12} + 5 \zeta_{12}^{2} + 7 \zeta_{12}^{3} ) q^{95} + ( 8 - 4 \zeta_{12} - 4 \zeta_{12}^{2} - 4 \zeta_{12}^{3} ) q^{96} + ( -5 - 5 \zeta_{12} + 5 \zeta_{12}^{2} ) q^{97} + ( -6 - 10 \zeta_{12} - 4 \zeta_{12}^{2} + 4 \zeta_{12}^{3} ) q^{98} -6 \zeta_{12}^{2} q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - 4q^{2} - 2q^{5} - 6q^{6} - 10q^{7} + 8q^{8} - 6q^{9} + O(q^{10}) \) \( 4q - 4q^{2} - 2q^{5} - 6q^{6} - 10q^{7} + 8q^{8} - 6q^{9} - 2q^{10} - 4q^{11} + 12q^{12} - 12q^{13} + 18q^{14} - 12q^{15} - 16q^{16} - 12q^{17} + 6q^{18} - 12q^{19} + 8q^{20} + 18q^{21} + 4q^{22} - 6q^{23} - 12q^{24} + 6q^{25} + 12q^{26} - 16q^{28} + 18q^{29} + 18q^{30} + 6q^{31} + 16q^{32} + 24q^{34} - 2q^{35} + 12q^{37} + 12q^{38} - 12q^{39} - 12q^{40} - 12q^{41} - 18q^{43} + 12q^{45} + 6q^{46} - 12q^{47} + 18q^{49} - 14q^{50} + 18q^{51} + 8q^{55} - 4q^{56} + 6q^{57} - 22q^{58} - 18q^{59} - 12q^{60} - 30q^{61} + 12q^{62} + 24q^{63} + 24q^{65} - 12q^{67} - 24q^{68} - 6q^{69} + 8q^{70} - 12q^{72} - 20q^{73} - 24q^{74} + 16q^{77} + 36q^{78} - 18q^{79} + 8q^{80} - 18q^{81} + 18q^{82} - 26q^{83} - 36q^{84} + 18q^{85} + 24q^{86} - 8q^{88} + 24q^{89} + 12q^{90} + 18q^{93} + 6q^{94} - 6q^{95} + 24q^{96} - 10q^{97} - 32q^{98} - 12q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/360\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(217\) \(271\) \(281\)
\(\chi(n)\) \(-1\) \(\zeta_{12}^{3}\) \(1\) \(\zeta_{12}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
77.1
−0.866025 + 0.500000i
−0.866025 0.500000i
0.866025 0.500000i
0.866025 + 0.500000i
−1.00000 1.00000i 0.866025 1.50000i 2.00000i −2.23205 0.133975i −2.36603 + 0.633975i −0.767949 + 2.86603i 2.00000 2.00000i −1.50000 2.59808i 2.09808 + 2.36603i
173.1 −1.00000 + 1.00000i 0.866025 + 1.50000i 2.00000i −2.23205 + 0.133975i −2.36603 0.633975i −0.767949 2.86603i 2.00000 + 2.00000i −1.50000 + 2.59808i 2.09808 2.36603i
293.1 −1.00000 + 1.00000i −0.866025 + 1.50000i 2.00000i 1.23205 + 1.86603i −0.633975 2.36603i −4.23205 1.13397i 2.00000 + 2.00000i −1.50000 2.59808i −3.09808 0.633975i
317.1 −1.00000 1.00000i −0.866025 1.50000i 2.00000i 1.23205 1.86603i −0.633975 + 2.36603i −4.23205 + 1.13397i 2.00000 2.00000i −1.50000 + 2.59808i −3.09808 + 0.633975i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
360.br even 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 360.2.br.a 4
5.c odd 4 1 360.2.br.b yes 4
8.b even 2 1 360.2.br.d yes 4
9.d odd 6 1 360.2.br.c yes 4
40.i odd 4 1 360.2.br.c yes 4
45.l even 12 1 360.2.br.d yes 4
72.j odd 6 1 360.2.br.b yes 4
360.br even 12 1 inner 360.2.br.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
360.2.br.a 4 1.a even 1 1 trivial
360.2.br.a 4 360.br even 12 1 inner
360.2.br.b yes 4 5.c odd 4 1
360.2.br.b yes 4 72.j odd 6 1
360.2.br.c yes 4 9.d odd 6 1
360.2.br.c yes 4 40.i odd 4 1
360.2.br.d yes 4 8.b even 2 1
360.2.br.d yes 4 45.l even 12 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(360, [\chi])\):

\( T_{7}^{4} + 10 T_{7}^{3} + 41 T_{7}^{2} + 104 T_{7} + 169 \)
\( T_{11}^{2} + 2 T_{11} + 4 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( ( 2 + 2 T + T^{2} )^{2} \)
$3$ \( 9 + 3 T^{2} + T^{4} \)
$5$ \( 25 + 10 T - T^{2} + 2 T^{3} + T^{4} \)
$7$ \( 169 + 104 T + 41 T^{2} + 10 T^{3} + T^{4} \)
$11$ \( ( 4 + 2 T + T^{2} )^{2} \)
$13$ \( 144 + 36 T^{2} + 12 T^{3} + T^{4} \)
$17$ \( ( 18 + 6 T + T^{2} )^{2} \)
$19$ \( ( 6 + 6 T + T^{2} )^{2} \)
$23$ \( 9 + 9 T^{2} + 6 T^{3} + T^{4} \)
$29$ \( 529 - 414 T + 131 T^{2} - 18 T^{3} + T^{4} \)
$31$ \( 324 + 108 T + 54 T^{2} - 6 T^{3} + T^{4} \)
$37$ \( 36 + 72 T + 72 T^{2} - 12 T^{3} + T^{4} \)
$41$ \( 9 + 36 T + 51 T^{2} + 12 T^{3} + T^{4} \)
$43$ \( 36 + 36 T + 90 T^{2} + 18 T^{3} + T^{4} \)
$47$ \( 81 + 54 T + 45 T^{2} + 12 T^{3} + T^{4} \)
$53$ \( 2916 + T^{4} \)
$59$ \( 484 - 396 T + 86 T^{2} + 18 T^{3} + T^{4} \)
$61$ \( 1521 + 1170 T + 339 T^{2} + 30 T^{3} + T^{4} \)
$67$ \( 1521 + 234 T + 45 T^{2} + 12 T^{3} + T^{4} \)
$71$ \( ( 144 + T^{2} )^{2} \)
$73$ \( 16 - 80 T + 200 T^{2} + 20 T^{3} + T^{4} \)
$79$ \( 324 + 324 T + 126 T^{2} + 18 T^{3} + T^{4} \)
$83$ \( 14641 + 3388 T + 365 T^{2} + 26 T^{3} + T^{4} \)
$89$ \( ( -39 - 12 T + T^{2} )^{2} \)
$97$ \( 2500 + 500 T + 50 T^{2} + 10 T^{3} + T^{4} \)
show more
show less