Newspace parameters
Level: | \( N \) | \(=\) | \( 360 = 2^{3} \cdot 3^{2} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 360.bf (of order \(6\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(2.87461447277\) |
Analytic rank: | \(0\) |
Dimension: | \(92\) |
Relative dimension: | \(46\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
61.1 | −1.41336 | + | 0.0492552i | 1.32635 | + | 1.11391i | 1.99515 | − | 0.139230i | 0.866025 | − | 0.500000i | −1.92947 | − | 1.50902i | 0.206718 | − | 0.358047i | −2.81300 | + | 0.295053i | 0.518424 | + | 2.95487i | −1.19937 | + | 0.749334i |
61.2 | −1.41185 | − | 0.0816689i | −1.65748 | − | 0.502749i | 1.98666 | + | 0.230609i | −0.866025 | + | 0.500000i | 2.29906 | + | 0.845173i | 0.375568 | − | 0.650502i | −2.78604 | − | 0.487834i | 2.49449 | + | 1.66660i | 1.26354 | − | 0.635199i |
61.3 | −1.34949 | − | 0.422946i | 0.162796 | − | 1.72438i | 1.64223 | + | 1.14152i | 0.866025 | − | 0.500000i | −0.949013 | + | 2.25818i | 0.543298 | − | 0.941020i | −1.73337 | − | 2.23505i | −2.94699 | − | 0.561447i | −1.38016 | + | 0.308462i |
61.4 | −1.32896 | + | 0.483599i | 0.351155 | − | 1.69608i | 1.53226 | − | 1.28537i | −0.866025 | + | 0.500000i | 0.353554 | + | 2.42384i | −1.83657 | + | 3.18103i | −1.41471 | + | 2.44920i | −2.75338 | − | 1.19117i | 0.909112 | − | 1.08329i |
61.5 | −1.32877 | − | 0.484123i | 1.19560 | + | 1.25321i | 1.53125 | + | 1.28658i | −0.866025 | + | 0.500000i | −0.981963 | − | 2.24405i | −1.81917 | + | 3.15090i | −1.41181 | − | 2.45087i | −0.141089 | + | 2.99668i | 1.39281 | − | 0.245121i |
61.6 | −1.28966 | + | 0.580335i | 1.73199 | + | 0.0140878i | 1.32642 | − | 1.49686i | −0.866025 | + | 0.500000i | −2.24185 | + | 0.986968i | 1.38868 | − | 2.40527i | −0.841945 | + | 2.70021i | 2.99960 | + | 0.0488000i | 0.826707 | − | 1.14741i |
61.7 | −1.24962 | − | 0.662158i | −0.443022 | + | 1.67443i | 1.12309 | + | 1.65489i | −0.866025 | + | 0.500000i | 1.66235 | − | 1.79905i | 2.04026 | − | 3.53383i | −0.307637 | − | 2.81165i | −2.60746 | − | 1.48362i | 1.41328 | − | 0.0513631i |
61.8 | −1.24717 | − | 0.666764i | −1.64287 | + | 0.548626i | 1.11085 | + | 1.66313i | 0.866025 | − | 0.500000i | 2.41473 | + | 0.411176i | −0.740799 | + | 1.28310i | −0.276500 | − | 2.81488i | 2.39802 | − | 1.80264i | −1.41346 | + | 0.0461488i |
61.9 | −1.12757 | + | 0.853578i | 0.994723 | − | 1.41793i | 0.542810 | − | 1.92493i | 0.866025 | − | 0.500000i | 0.0886978 | + | 2.44788i | −0.293997 | + | 0.509218i | 1.03102 | + | 2.63382i | −1.02105 | − | 2.82090i | −0.549712 | + | 1.30300i |
61.10 | −1.04483 | − | 0.953069i | −0.410386 | − | 1.68273i | 0.183320 | + | 1.99158i | −0.866025 | + | 0.500000i | −1.17498 | + | 2.14929i | −1.05202 | + | 1.82216i | 1.70658 | − | 2.25557i | −2.66317 | + | 1.38114i | 1.38138 | + | 0.302969i |
61.11 | −0.941863 | + | 1.05494i | 0.904267 | + | 1.47726i | −0.225788 | − | 1.98721i | 0.866025 | − | 0.500000i | −2.41011 | − | 0.437433i | −0.852557 | + | 1.47667i | 2.30905 | + | 1.63349i | −1.36460 | + | 2.67168i | −0.288208 | + | 1.38453i |
61.12 | −0.911534 | + | 1.08125i | −1.64095 | + | 0.554332i | −0.338210 | − | 1.97120i | −0.866025 | + | 0.500000i | 0.896409 | − | 2.27957i | 1.02186 | − | 1.76992i | 2.43965 | + | 1.43112i | 2.38543 | − | 1.81926i | 0.248786 | − | 1.39216i |
61.13 | −0.884696 | + | 1.10332i | −1.72914 | − | 0.100320i | −0.434624 | − | 1.95220i | 0.866025 | − | 0.500000i | 1.64045 | − | 1.81904i | −2.03225 | + | 3.51996i | 2.53841 | + | 1.24758i | 2.97987 | + | 0.346937i | −0.214510 | + | 1.39785i |
61.14 | −0.860361 | − | 1.12240i | 1.69766 | − | 0.343430i | −0.519559 | + | 1.93134i | 0.866025 | − | 0.500000i | −1.84607 | − | 1.60998i | −2.54751 | + | 4.41241i | 2.61474 | − | 1.07849i | 2.76411 | − | 1.16605i | −1.30629 | − | 0.541846i |
61.15 | −0.785855 | − | 1.17577i | −1.36869 | − | 1.06146i | −0.764864 | + | 1.84797i | 0.866025 | − | 0.500000i | −0.172445 | + | 2.44341i | 2.36602 | − | 4.09807i | 2.77385 | − | 0.552930i | 0.746600 | + | 2.90561i | −1.26845 | − | 0.625318i |
61.16 | −0.705423 | − | 1.22572i | 1.15336 | − | 1.29220i | −1.00476 | + | 1.72930i | −0.866025 | + | 0.500000i | −2.39747 | − | 0.502143i | 0.807871 | − | 1.39927i | 2.82840 | + | 0.0116626i | −0.339538 | − | 2.98072i | 1.22377 | + | 0.708789i |
61.17 | −0.513154 | + | 1.31783i | 1.72914 | + | 0.100320i | −1.47335 | − | 1.35250i | −0.866025 | + | 0.500000i | −1.01952 | + | 2.22723i | −2.03225 | + | 3.51996i | 2.53841 | − | 1.24758i | 2.97987 | + | 0.346937i | −0.214510 | − | 1.39785i |
61.18 | −0.480624 | + | 1.33004i | 1.64095 | − | 0.554332i | −1.53800 | − | 1.27850i | 0.866025 | − | 0.500000i | −0.0513970 | + | 2.44895i | 1.02186 | − | 1.76992i | 2.43965 | − | 1.43112i | 2.38543 | − | 1.81926i | 0.248786 | + | 1.39216i |
61.19 | −0.442672 | + | 1.34315i | −0.904267 | − | 1.47726i | −1.60808 | − | 1.18915i | −0.866025 | + | 0.500000i | 2.38447 | − | 0.560621i | −0.852557 | + | 1.47667i | 2.30905 | − | 1.63349i | −1.36460 | + | 2.67168i | −0.288208 | − | 1.38453i |
61.20 | −0.332127 | − | 1.37466i | 1.42280 | + | 0.987751i | −1.77938 | + | 0.913123i | −0.866025 | + | 0.500000i | 0.885274 | − | 2.28392i | 0.647320 | − | 1.12119i | 1.84622 | + | 2.14278i | 1.04869 | + | 2.81074i | 0.974960 | + | 1.02443i |
See all 92 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
8.b | even | 2 | 1 | inner |
9.c | even | 3 | 1 | inner |
72.n | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 360.2.bf.b | ✓ | 92 |
3.b | odd | 2 | 1 | 1080.2.bf.b | 92 | ||
4.b | odd | 2 | 1 | 1440.2.bv.b | 92 | ||
8.b | even | 2 | 1 | inner | 360.2.bf.b | ✓ | 92 |
8.d | odd | 2 | 1 | 1440.2.bv.b | 92 | ||
9.c | even | 3 | 1 | inner | 360.2.bf.b | ✓ | 92 |
9.d | odd | 6 | 1 | 1080.2.bf.b | 92 | ||
12.b | even | 2 | 1 | 4320.2.bv.b | 92 | ||
24.f | even | 2 | 1 | 4320.2.bv.b | 92 | ||
24.h | odd | 2 | 1 | 1080.2.bf.b | 92 | ||
36.f | odd | 6 | 1 | 1440.2.bv.b | 92 | ||
36.h | even | 6 | 1 | 4320.2.bv.b | 92 | ||
72.j | odd | 6 | 1 | 1080.2.bf.b | 92 | ||
72.l | even | 6 | 1 | 4320.2.bv.b | 92 | ||
72.n | even | 6 | 1 | inner | 360.2.bf.b | ✓ | 92 |
72.p | odd | 6 | 1 | 1440.2.bv.b | 92 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
360.2.bf.b | ✓ | 92 | 1.a | even | 1 | 1 | trivial |
360.2.bf.b | ✓ | 92 | 8.b | even | 2 | 1 | inner |
360.2.bf.b | ✓ | 92 | 9.c | even | 3 | 1 | inner |
360.2.bf.b | ✓ | 92 | 72.n | even | 6 | 1 | inner |
1080.2.bf.b | 92 | 3.b | odd | 2 | 1 | ||
1080.2.bf.b | 92 | 9.d | odd | 6 | 1 | ||
1080.2.bf.b | 92 | 24.h | odd | 2 | 1 | ||
1080.2.bf.b | 92 | 72.j | odd | 6 | 1 | ||
1440.2.bv.b | 92 | 4.b | odd | 2 | 1 | ||
1440.2.bv.b | 92 | 8.d | odd | 2 | 1 | ||
1440.2.bv.b | 92 | 36.f | odd | 6 | 1 | ||
1440.2.bv.b | 92 | 72.p | odd | 6 | 1 | ||
4320.2.bv.b | 92 | 12.b | even | 2 | 1 | ||
4320.2.bv.b | 92 | 24.f | even | 2 | 1 | ||
4320.2.bv.b | 92 | 36.h | even | 6 | 1 | ||
4320.2.bv.b | 92 | 72.l | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \(13\!\cdots\!44\)\( T_{7}^{28} + \)\(18\!\cdots\!24\)\( T_{7}^{27} + \)\(87\!\cdots\!85\)\( T_{7}^{26} + \)\(10\!\cdots\!56\)\( T_{7}^{25} + \)\(45\!\cdots\!52\)\( T_{7}^{24} + \)\(43\!\cdots\!68\)\( T_{7}^{23} + \)\(18\!\cdots\!01\)\( T_{7}^{22} + \)\(14\!\cdots\!16\)\( T_{7}^{21} + \)\(62\!\cdots\!20\)\( T_{7}^{20} + \)\(38\!\cdots\!84\)\( T_{7}^{19} + \)\(16\!\cdots\!18\)\( T_{7}^{18} + \)\(74\!\cdots\!44\)\( T_{7}^{17} + \)\(35\!\cdots\!20\)\( T_{7}^{16} + \)\(10\!\cdots\!28\)\( T_{7}^{15} + \)\(59\!\cdots\!91\)\( T_{7}^{14} + \)\(87\!\cdots\!16\)\( T_{7}^{13} + \)\(77\!\cdots\!48\)\( T_{7}^{12} + \)\(27\!\cdots\!92\)\( T_{7}^{11} + \)\(74\!\cdots\!99\)\( T_{7}^{10} - \)\(28\!\cdots\!60\)\( T_{7}^{9} + \)\(50\!\cdots\!52\)\( T_{7}^{8} - \)\(20\!\cdots\!84\)\( T_{7}^{7} + \)\(20\!\cdots\!69\)\( T_{7}^{6} + \)\(29\!\cdots\!32\)\( T_{7}^{5} + \)\(55\!\cdots\!48\)\( T_{7}^{4} + \)\(48\!\cdots\!76\)\( T_{7}^{3} + \)\(68\!\cdots\!20\)\( T_{7}^{2} + \)\(49\!\cdots\!28\)\( T_{7} + \)\(55\!\cdots\!24\)\( \)">\(T_{7}^{46} + \cdots\) acting on \(S_{2}^{\mathrm{new}}(360, [\chi])\).