Properties

Label 360.2
Level 360
Weight 2
Dimension 1357
Nonzero newspaces 18
Newform subspaces 57
Sturm bound 13824
Trace bound 10

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 360 = 2^{3} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 18 \)
Newform subspaces: \( 57 \)
Sturm bound: \(13824\)
Trace bound: \(10\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(360))\).

Total New Old
Modular forms 3840 1465 2375
Cusp forms 3073 1357 1716
Eisenstein series 767 108 659

Trace form

\( 1357q - 8q^{2} - 10q^{3} - 8q^{4} - 5q^{5} - 16q^{6} - 12q^{7} + 16q^{8} - 14q^{9} + O(q^{10}) \) \( 1357q - 8q^{2} - 10q^{3} - 8q^{4} - 5q^{5} - 16q^{6} - 12q^{7} + 16q^{8} - 14q^{9} - 12q^{10} + 6q^{11} + 12q^{12} + 2q^{13} + 28q^{14} + 8q^{15} + 12q^{16} + 18q^{17} - 16q^{18} + 24q^{19} - 2q^{20} + 32q^{21} - 20q^{22} + 60q^{23} - 64q^{24} + q^{25} - 64q^{26} + 8q^{27} - 56q^{28} + 30q^{29} - 62q^{30} + 48q^{31} - 108q^{32} + 6q^{33} - 16q^{34} + 12q^{35} - 132q^{36} + 26q^{37} - 140q^{38} - 72q^{39} - 62q^{40} - 24q^{41} - 140q^{42} - 38q^{43} - 172q^{44} - 2q^{45} - 160q^{46} - 116q^{47} - 112q^{48} + 47q^{49} - 170q^{50} - 98q^{51} - 96q^{52} - 14q^{53} - 96q^{54} - 84q^{55} - 128q^{56} - 22q^{57} - 136q^{58} - 150q^{59} - 70q^{60} - 6q^{61} - 64q^{62} - 152q^{63} - 152q^{64} - 64q^{65} + 64q^{66} - 74q^{67} - 28q^{68} - 68q^{69} - 122q^{70} - 152q^{71} + 108q^{72} - 30q^{73} + 80q^{74} - 122q^{75} + 20q^{76} - 72q^{77} + 100q^{78} - 40q^{79} - 16q^{80} - 150q^{81} - 108q^{82} - 172q^{83} + 80q^{84} + 50q^{85} + 92q^{86} - 156q^{87} - 36q^{88} - 94q^{89} - 2q^{90} - 96q^{91} - 68q^{92} - 76q^{93} - 24q^{94} - 204q^{95} - 128q^{96} - 76q^{97} - 76q^{98} - 228q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(360))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
360.2.a \(\chi_{360}(1, \cdot)\) 360.2.a.a 1 1
360.2.a.b 1
360.2.a.c 1
360.2.a.d 1
360.2.a.e 1
360.2.b \(\chi_{360}(251, \cdot)\) 360.2.b.a 2 1
360.2.b.b 2
360.2.b.c 6
360.2.b.d 6
360.2.d \(\chi_{360}(109, \cdot)\) 360.2.d.a 4 1
360.2.d.b 4
360.2.d.c 4
360.2.d.d 4
360.2.d.e 6
360.2.d.f 6
360.2.f \(\chi_{360}(289, \cdot)\) 360.2.f.a 2 1
360.2.f.b 2
360.2.f.c 2
360.2.f.d 2
360.2.h \(\chi_{360}(71, \cdot)\) None 0 1
360.2.k \(\chi_{360}(181, \cdot)\) 360.2.k.a 2 1
360.2.k.b 2
360.2.k.c 2
360.2.k.d 4
360.2.k.e 4
360.2.k.f 6
360.2.m \(\chi_{360}(179, \cdot)\) 360.2.m.a 4 1
360.2.m.b 4
360.2.m.c 16
360.2.o \(\chi_{360}(359, \cdot)\) None 0 1
360.2.q \(\chi_{360}(121, \cdot)\) 360.2.q.a 2 2
360.2.q.b 4
360.2.q.c 4
360.2.q.d 6
360.2.q.e 8
360.2.s \(\chi_{360}(17, \cdot)\) 360.2.s.a 4 2
360.2.s.b 8
360.2.t \(\chi_{360}(127, \cdot)\) None 0 2
360.2.w \(\chi_{360}(163, \cdot)\) 360.2.w.a 4 2
360.2.w.b 4
360.2.w.c 8
360.2.w.d 16
360.2.w.e 24
360.2.x \(\chi_{360}(53, \cdot)\) 360.2.x.a 48 2
360.2.bb \(\chi_{360}(119, \cdot)\) None 0 2
360.2.bd \(\chi_{360}(59, \cdot)\) 360.2.bd.a 8 2
360.2.bd.b 128
360.2.bf \(\chi_{360}(61, \cdot)\) 360.2.bf.a 4 2
360.2.bf.b 92
360.2.bg \(\chi_{360}(191, \cdot)\) None 0 2
360.2.bi \(\chi_{360}(49, \cdot)\) 360.2.bi.a 4 2
360.2.bi.b 32
360.2.bk \(\chi_{360}(229, \cdot)\) 360.2.bk.a 136 2
360.2.bm \(\chi_{360}(11, \cdot)\) 360.2.bm.a 48 2
360.2.bm.b 48
360.2.bo \(\chi_{360}(43, \cdot)\) 360.2.bo.a 272 4
360.2.br \(\chi_{360}(77, \cdot)\) 360.2.br.a 4 4
360.2.br.b 4
360.2.br.c 4
360.2.br.d 4
360.2.br.e 256
360.2.bs \(\chi_{360}(113, \cdot)\) 360.2.bs.a 72 4
360.2.bv \(\chi_{360}(7, \cdot)\) None 0 4

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(360))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(360)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(30))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(36))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(40))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(45))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(60))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(72))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(90))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(120))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(180))\)\(^{\oplus 2}\)