Properties

Label 360.1.u.a
Level 360
Weight 1
Character orbit 360.u
Analytic conductor 0.180
Analytic rank 0
Dimension 4
Projective image \(D_{4}\)
CM discriminant -24
Inner twists 8

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 360 = 2^{3} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 360.u (of order \(4\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.179663404548\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image \(D_{4}\)
Projective field Galois closure of 4.0.9000.2

$q$-expansion

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q -\zeta_{8}^{3} q^{2} -\zeta_{8}^{2} q^{4} + \zeta_{8} q^{5} + ( -1 - \zeta_{8}^{2} ) q^{7} -\zeta_{8} q^{8} +O(q^{10})\) \( q -\zeta_{8}^{3} q^{2} -\zeta_{8}^{2} q^{4} + \zeta_{8} q^{5} + ( -1 - \zeta_{8}^{2} ) q^{7} -\zeta_{8} q^{8} + q^{10} + ( \zeta_{8} + \zeta_{8}^{3} ) q^{11} + ( -\zeta_{8} + \zeta_{8}^{3} ) q^{14} - q^{16} -\zeta_{8}^{3} q^{20} + ( 1 + \zeta_{8}^{2} ) q^{22} + \zeta_{8}^{2} q^{25} + ( -1 + \zeta_{8}^{2} ) q^{28} + ( -\zeta_{8} + \zeta_{8}^{3} ) q^{29} + \zeta_{8}^{3} q^{32} + ( -\zeta_{8} - \zeta_{8}^{3} ) q^{35} -\zeta_{8}^{2} q^{40} + ( \zeta_{8} - \zeta_{8}^{3} ) q^{44} + \zeta_{8}^{2} q^{49} + \zeta_{8} q^{50} + ( -1 + \zeta_{8}^{2} ) q^{55} + ( \zeta_{8} + \zeta_{8}^{3} ) q^{56} + ( -1 + \zeta_{8}^{2} ) q^{58} + ( \zeta_{8} - \zeta_{8}^{3} ) q^{59} + \zeta_{8}^{2} q^{64} + ( -1 - \zeta_{8}^{2} ) q^{70} + ( 1 - \zeta_{8}^{2} ) q^{73} -2 \zeta_{8}^{3} q^{77} -\zeta_{8} q^{80} -2 \zeta_{8} q^{83} + ( 1 - \zeta_{8}^{2} ) q^{88} + ( -1 - \zeta_{8}^{2} ) q^{97} + \zeta_{8} q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - 4q^{7} + O(q^{10}) \) \( 4q - 4q^{7} + 4q^{10} - 4q^{16} + 4q^{22} - 4q^{28} - 4q^{55} - 4q^{58} - 4q^{70} + 4q^{73} + 4q^{88} - 4q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/360\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(217\) \(271\) \(281\)
\(\chi(n)\) \(-1\) \(\zeta_{8}^{2}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
37.1
−0.707107 0.707107i
0.707107 + 0.707107i
−0.707107 + 0.707107i
0.707107 0.707107i
−0.707107 + 0.707107i 0 1.00000i −0.707107 0.707107i 0 −1.00000 1.00000i 0.707107 + 0.707107i 0 1.00000
37.2 0.707107 0.707107i 0 1.00000i 0.707107 + 0.707107i 0 −1.00000 1.00000i −0.707107 0.707107i 0 1.00000
253.1 −0.707107 0.707107i 0 1.00000i −0.707107 + 0.707107i 0 −1.00000 + 1.00000i 0.707107 0.707107i 0 1.00000
253.2 0.707107 + 0.707107i 0 1.00000i 0.707107 0.707107i 0 −1.00000 + 1.00000i −0.707107 + 0.707107i 0 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
24.h odd 2 1 CM by \(\Q(\sqrt{-6}) \)
3.b odd 2 1 inner
5.c odd 4 1 inner
8.b even 2 1 inner
15.e even 4 1 inner
40.i odd 4 1 inner
120.w even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 360.1.u.a 4
3.b odd 2 1 inner 360.1.u.a 4
4.b odd 2 1 1440.1.y.a 4
5.b even 2 1 1800.1.u.b 4
5.c odd 4 1 inner 360.1.u.a 4
5.c odd 4 1 1800.1.u.b 4
8.b even 2 1 inner 360.1.u.a 4
8.d odd 2 1 1440.1.y.a 4
9.c even 3 2 3240.1.bv.c 8
9.d odd 6 2 3240.1.bv.c 8
12.b even 2 1 1440.1.y.a 4
15.d odd 2 1 1800.1.u.b 4
15.e even 4 1 inner 360.1.u.a 4
15.e even 4 1 1800.1.u.b 4
20.e even 4 1 1440.1.y.a 4
24.f even 2 1 1440.1.y.a 4
24.h odd 2 1 CM 360.1.u.a 4
40.f even 2 1 1800.1.u.b 4
40.i odd 4 1 inner 360.1.u.a 4
40.i odd 4 1 1800.1.u.b 4
40.k even 4 1 1440.1.y.a 4
45.k odd 12 2 3240.1.bv.c 8
45.l even 12 2 3240.1.bv.c 8
60.l odd 4 1 1440.1.y.a 4
72.j odd 6 2 3240.1.bv.c 8
72.n even 6 2 3240.1.bv.c 8
120.i odd 2 1 1800.1.u.b 4
120.q odd 4 1 1440.1.y.a 4
120.w even 4 1 inner 360.1.u.a 4
120.w even 4 1 1800.1.u.b 4
360.br even 12 2 3240.1.bv.c 8
360.bu odd 12 2 3240.1.bv.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
360.1.u.a 4 1.a even 1 1 trivial
360.1.u.a 4 3.b odd 2 1 inner
360.1.u.a 4 5.c odd 4 1 inner
360.1.u.a 4 8.b even 2 1 inner
360.1.u.a 4 15.e even 4 1 inner
360.1.u.a 4 24.h odd 2 1 CM
360.1.u.a 4 40.i odd 4 1 inner
360.1.u.a 4 120.w even 4 1 inner
1440.1.y.a 4 4.b odd 2 1
1440.1.y.a 4 8.d odd 2 1
1440.1.y.a 4 12.b even 2 1
1440.1.y.a 4 20.e even 4 1
1440.1.y.a 4 24.f even 2 1
1440.1.y.a 4 40.k even 4 1
1440.1.y.a 4 60.l odd 4 1
1440.1.y.a 4 120.q odd 4 1
1800.1.u.b 4 5.b even 2 1
1800.1.u.b 4 5.c odd 4 1
1800.1.u.b 4 15.d odd 2 1
1800.1.u.b 4 15.e even 4 1
1800.1.u.b 4 40.f even 2 1
1800.1.u.b 4 40.i odd 4 1
1800.1.u.b 4 120.i odd 2 1
1800.1.u.b 4 120.w even 4 1
3240.1.bv.c 8 9.c even 3 2
3240.1.bv.c 8 9.d odd 6 2
3240.1.bv.c 8 45.k odd 12 2
3240.1.bv.c 8 45.l even 12 2
3240.1.bv.c 8 72.j odd 6 2
3240.1.bv.c 8 72.n even 6 2
3240.1.bv.c 8 360.br even 12 2
3240.1.bv.c 8 360.bu odd 12 2

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(360, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + T^{4} \)
$3$ 1
$5$ \( 1 + T^{4} \)
$7$ \( ( 1 + T )^{4}( 1 + T^{2} )^{2} \)
$11$ \( ( 1 + T^{4} )^{2} \)
$13$ \( ( 1 + T^{4} )^{2} \)
$17$ \( ( 1 + T^{4} )^{2} \)
$19$ \( ( 1 + T^{2} )^{4} \)
$23$ \( ( 1 + T^{4} )^{2} \)
$29$ \( ( 1 + T^{4} )^{2} \)
$31$ \( ( 1 + T^{2} )^{4} \)
$37$ \( ( 1 + T^{4} )^{2} \)
$41$ \( ( 1 + T^{2} )^{4} \)
$43$ \( ( 1 + T^{4} )^{2} \)
$47$ \( ( 1 + T^{4} )^{2} \)
$53$ \( ( 1 + T^{4} )^{2} \)
$59$ \( ( 1 + T^{4} )^{2} \)
$61$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
$67$ \( ( 1 + T^{4} )^{2} \)
$71$ \( ( 1 + T^{2} )^{4} \)
$73$ \( ( 1 - T )^{4}( 1 + T^{2} )^{2} \)
$79$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
$83$ \( ( 1 + T^{4} )^{2} \)
$89$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
$97$ \( ( 1 + T )^{4}( 1 + T^{2} )^{2} \)
show more
show less