Properties

Label 36.8.a
Level $36$
Weight $8$
Character orbit 36.a
Rep. character $\chi_{36}(1,\cdot)$
Character field $\Q$
Dimension $3$
Newform subspaces $3$
Sturm bound $48$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 36 = 2^{2} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 36.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(48\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_0(36))\).

Total New Old
Modular forms 48 3 45
Cusp forms 36 3 33
Eisenstein series 12 0 12

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)FrickeDim
\(-\)\(+\)\(-\)\(1\)
\(-\)\(-\)\(+\)\(2\)
Plus space\(+\)\(2\)
Minus space\(-\)\(1\)

Trace form

\( 3 q + 108 q^{5} - 228 q^{7} + 8208 q^{11} - 4314 q^{13} + 58860 q^{17} - 22008 q^{19} + 92880 q^{23} - 18591 q^{25} + 108 q^{29} + 58524 q^{31} - 614736 q^{35} + 35610 q^{37} - 418500 q^{41} + 516264 q^{43}+ \cdots + 24341298 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_0(36))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3
36.8.a.a 36.a 1.a $1$ $11.246$ \(\Q\) None 12.8.a.b \(0\) \(0\) \(-270\) \(1112\) $-$ $-$ $\mathrm{SU}(2)$ \(q-270q^{5}+1112q^{7}+5724q^{11}+\cdots\)
36.8.a.b 36.a 1.a $1$ $11.246$ \(\Q\) \(\Q(\sqrt{-3}) \) 36.8.a.b \(0\) \(0\) \(0\) \(-508\) $-$ $+$ $N(\mathrm{U}(1))$ \(q-508q^{7}-14614q^{13}-57448q^{19}+\cdots\)
36.8.a.c 36.a 1.a $1$ $11.246$ \(\Q\) None 12.8.a.a \(0\) \(0\) \(378\) \(-832\) $-$ $-$ $\mathrm{SU}(2)$ \(q+378q^{5}-832q^{7}+2484q^{11}+14870q^{13}+\cdots\)

Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_0(36))\) into lower level spaces

\( S_{8}^{\mathrm{old}}(\Gamma_0(36)) \simeq \) \(S_{8}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(12))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(18))\)\(^{\oplus 2}\)