Defining parameters
Level: | \( N \) | \(=\) | \( 36 = 2^{2} \cdot 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 36.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(48\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_0(36))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 48 | 3 | 45 |
Cusp forms | 36 | 3 | 33 |
Eisenstein series | 12 | 0 | 12 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | Fricke | Dim |
---|---|---|---|
\(-\) | \(+\) | \(-\) | \(1\) |
\(-\) | \(-\) | \(+\) | \(2\) |
Plus space | \(+\) | \(2\) | |
Minus space | \(-\) | \(1\) |
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_0(36))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 3 | |||||||
36.8.a.a | $1$ | $11.246$ | \(\Q\) | None | \(0\) | \(0\) | \(-270\) | \(1112\) | $-$ | $-$ | \(q-270q^{5}+1112q^{7}+5724q^{11}+\cdots\) | |
36.8.a.b | $1$ | $11.246$ | \(\Q\) | \(\Q(\sqrt{-3}) \) | \(0\) | \(0\) | \(0\) | \(-508\) | $-$ | $+$ | \(q-508q^{7}-14614q^{13}-57448q^{19}+\cdots\) | |
36.8.a.c | $1$ | $11.246$ | \(\Q\) | None | \(0\) | \(0\) | \(378\) | \(-832\) | $-$ | $-$ | \(q+378q^{5}-832q^{7}+2484q^{11}+14870q^{13}+\cdots\) |
Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_0(36))\) into lower level spaces
\( S_{8}^{\mathrm{old}}(\Gamma_0(36)) \simeq \) \(S_{8}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(12))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(18))\)\(^{\oplus 2}\)