Properties

Label 36.8
Level 36
Weight 8
Dimension 111
Nonzero newspaces 4
Newform subspaces 7
Sturm bound 576
Trace bound 4

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 36 = 2^{2} \cdot 3^{2} \)
Weight: \( k \) = \( 8 \)
Nonzero newspaces: \( 4 \)
Newform subspaces: \( 7 \)
Sturm bound: \(576\)
Trace bound: \(4\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_1(36))\).

Total New Old
Modular forms 272 119 153
Cusp forms 232 111 121
Eisenstein series 40 8 32

Trace form

\( 111 q - 3 q^{2} - 53 q^{4} + 423 q^{5} + 213 q^{6} - 311 q^{7} - 858 q^{9} + 2648 q^{10} + 8097 q^{11} - 18822 q^{12} - 13227 q^{13} + 43482 q^{14} - 7875 q^{15} - 3065 q^{16} + 58764 q^{17} - 72144 q^{18}+ \cdots + 69035013 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_1(36))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
36.8.a \(\chi_{36}(1, \cdot)\) 36.8.a.a 1 1
36.8.a.b 1
36.8.a.c 1
36.8.b \(\chi_{36}(35, \cdot)\) 36.8.b.a 2 1
36.8.b.b 12
36.8.e \(\chi_{36}(13, \cdot)\) 36.8.e.a 14 2
36.8.h \(\chi_{36}(11, \cdot)\) 36.8.h.a 80 2

Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_1(36))\) into lower level spaces

\( S_{8}^{\mathrm{old}}(\Gamma_1(36)) \cong \) \(S_{8}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 9}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(36))\)\(^{\oplus 1}\)