Properties

Label 36.6.h
Level $36$
Weight $6$
Character orbit 36.h
Rep. character $\chi_{36}(11,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $56$
Newform subspaces $1$
Sturm bound $36$
Trace bound $0$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 36 = 2^{2} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 36.h (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 36 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(36\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(36, [\chi])\).

Total New Old
Modular forms 64 64 0
Cusp forms 56 56 0
Eisenstein series 8 8 0

Trace form

\( 56q - 3q^{2} - q^{4} - 6q^{5} - 27q^{6} + 18q^{9} + O(q^{10}) \) \( 56q - 3q^{2} - q^{4} - 6q^{5} - 27q^{6} + 18q^{9} - 68q^{10} - 486q^{12} - 2q^{13} - 1518q^{14} - q^{16} + 1992q^{18} - 1242q^{20} + 330q^{21} + 63q^{22} + 2235q^{24} + 12498q^{25} - 2052q^{28} - 11946q^{29} - 6882q^{30} - 7233q^{32} + 17040q^{33} + 6361q^{34} + 6399q^{36} - 8q^{37} - 14877q^{38} - 1526q^{40} - 43536q^{41} + 18564q^{42} - 42q^{45} - 26880q^{46} - 5931q^{48} + 38414q^{49} + 38631q^{50} + 24988q^{52} + 37587q^{54} + 21186q^{56} - 90786q^{57} - 3314q^{58} + 60930q^{60} - 2q^{61} - 106342q^{64} + 35970q^{65} - 47838q^{66} + 31413q^{68} - 1854q^{69} + 10524q^{70} - 130941q^{72} + 53620q^{73} - 20406q^{74} + 26193q^{76} + 26178q^{77} - 96684q^{78} - 14790q^{81} - 151286q^{82} + 141630q^{84} + 6248q^{85} + 279237q^{86} - 122541q^{88} + 235278q^{90} + 435804q^{92} + 71838q^{93} + 63480q^{94} - 37476q^{96} - 58148q^{97} + O(q^{100}) \)

Decomposition of \(S_{6}^{\mathrm{new}}(36, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
36.6.h.a \(56\) \(5.774\) None \(-3\) \(0\) \(-6\) \(0\)