Properties

Label 36.5.f
Level 36
Weight 5
Character orbit f
Rep. character \(\chi_{36}(7,\cdot)\)
Character field \(\Q(\zeta_{6})\)
Dimension 44
Newform subspaces 1
Sturm bound 30
Trace bound 0

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 36 = 2^{2} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 36.f (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 36 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(30\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{5}(36, [\chi])\).

Total New Old
Modular forms 52 52 0
Cusp forms 44 44 0
Eisenstein series 8 8 0

Trace form

\( 44q - q^{2} - q^{4} - 2q^{5} + 15q^{6} + 122q^{8} - 60q^{9} + O(q^{10}) \) \( 44q - q^{2} - q^{4} - 2q^{5} + 15q^{6} + 122q^{8} - 60q^{9} + 28q^{10} - 228q^{12} - 2q^{13} + 252q^{14} - q^{16} - 56q^{17} + 72q^{18} - 140q^{20} + 138q^{21} - 33q^{22} - 951q^{24} - 1752q^{25} + 1096q^{26} - 516q^{28} + 526q^{29} - 1980q^{30} - 121q^{32} + 2994q^{33} + 385q^{34} - 1005q^{36} - 8q^{37} + 1395q^{38} - 2276q^{40} - 2762q^{41} + 3330q^{42} + 6714q^{44} + 4110q^{45} + 3576q^{46} + 2163q^{48} + 3428q^{49} + 6375q^{50} + 1438q^{52} - 10088q^{53} - 4983q^{54} - 7506q^{56} + 1752q^{57} - 4064q^{58} - 16392q^{60} - 2q^{61} - 18324q^{62} + 9026q^{64} - 2014q^{65} - 17358q^{66} - 11405q^{68} + 3354q^{69} + 3666q^{70} + 4083q^{72} - 3416q^{73} + 14620q^{74} + 1581q^{76} - 3942q^{77} + 34566q^{78} + 45520q^{80} - 1164q^{81} - 8486q^{82} + 51078q^{84} - 1252q^{85} + 22113q^{86} + 1995q^{88} + 13048q^{89} - 4692q^{90} - 30294q^{92} + 12090q^{93} + 7524q^{94} - 76164q^{96} + 5638q^{97} - 92938q^{98} + O(q^{100}) \)

Decomposition of \(S_{5}^{\mathrm{new}}(36, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
36.5.f.a \(44\) \(3.721\) None \(-1\) \(0\) \(-2\) \(0\)

Hecke characteristic polynomials

There are no characteristic polynomials of Hecke operators in the database