Properties

Label 36.4.e
Level $36$
Weight $4$
Character orbit 36.e
Rep. character $\chi_{36}(13,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $6$
Newform subspaces $1$
Sturm bound $24$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 36 = 2^{2} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 36.e (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 1 \)
Sturm bound: \(24\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(36, [\chi])\).

Total New Old
Modular forms 42 6 36
Cusp forms 30 6 24
Eisenstein series 12 0 12

Trace form

\( 6 q - 3 q^{3} + 6 q^{5} - 6 q^{7} + 39 q^{9} + 51 q^{11} + 12 q^{13} - 180 q^{15} - 222 q^{17} + 30 q^{19} - 120 q^{21} + 210 q^{23} - 3 q^{25} + 648 q^{27} + 456 q^{29} + 48 q^{31} - 603 q^{33} - 1104 q^{35}+ \cdots - 1854 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(36, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
36.4.e.a 36.e 9.c $6$ $2.124$ 6.0.6831243.2 None 36.4.e.a \(0\) \(-3\) \(6\) \(-6\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1-\beta _{2})q^{3}+(1-3\beta _{1}-2\beta _{2}-\beta _{3}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(36, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(36, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 2}\)