Properties

Label 36.3.g
Level $36$
Weight $3$
Character orbit 36.g
Rep. character $\chi_{36}(5,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $4$
Newform subspaces $1$
Sturm bound $18$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 36 = 2^{2} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 36.g (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(18\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(36, [\chi])\).

Total New Old
Modular forms 30 4 26
Cusp forms 18 4 14
Eisenstein series 12 0 12

Trace form

\( 4 q + 3 q^{3} + 9 q^{5} - q^{7} - 15 q^{9} - 36 q^{11} + 5 q^{13} - 45 q^{15} + 2 q^{19} + 99 q^{21} + 99 q^{23} + 13 q^{25} - 63 q^{29} - 7 q^{31} - 36 q^{33} - 64 q^{37} + 57 q^{39} - 18 q^{41} - 46 q^{43}+ \cdots + 171 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(36, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
36.3.g.a 36.g 9.d $4$ $0.981$ \(\Q(\sqrt{-3}, \sqrt{-11})\) None 36.3.g.a \(0\) \(3\) \(9\) \(-1\) $\mathrm{SU}(2)[C_{6}]$ \(q+(1-\beta _{1}+\beta _{3})q^{3}+(2-2\beta _{1}-2\beta _{2}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{3}^{\mathrm{old}}(36, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(36, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 2}\)