Properties

Label 36.3.f.c.7.6
Level 36
Weight 3
Character 36.7
Analytic conductor 0.981
Analytic rank 0
Dimension 16
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 36 = 2^{2} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 36.f (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.980928951697\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \(x^{16} - 3 x^{15} + 7 x^{14} - 30 x^{13} + 76 x^{12} - 144 x^{11} + 424 x^{10} - 912 x^{9} + 1552 x^{8} - 3648 x^{7} + 6784 x^{6} - 9216 x^{5} + 19456 x^{4} - 30720 x^{3} + 28672 x^{2} - 49152 x + 65536\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{8}\cdot 3^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 7.6
Root \(-0.710719 + 1.86946i\) of defining polynomial
Character \(\chi\) \(=\) 36.7
Dual form 36.3.f.c.31.6

$q$-expansion

\(f(q)\) \(=\) \(q+(0.710719 - 1.86946i) q^{2} +(2.32245 + 1.89900i) q^{3} +(-2.98976 - 2.65732i) q^{4} +(1.35609 + 2.34881i) q^{5} +(5.20072 - 2.99207i) q^{6} +(-10.0431 - 5.79837i) q^{7} +(-7.09263 + 3.70062i) q^{8} +(1.78756 + 8.82069i) q^{9} +O(q^{10})\) \(q+(0.710719 - 1.86946i) q^{2} +(2.32245 + 1.89900i) q^{3} +(-2.98976 - 2.65732i) q^{4} +(1.35609 + 2.34881i) q^{5} +(5.20072 - 2.99207i) q^{6} +(-10.0431 - 5.79837i) q^{7} +(-7.09263 + 3.70062i) q^{8} +(1.78756 + 8.82069i) q^{9} +(5.35481 - 0.865806i) q^{10} +(8.54822 + 4.93532i) q^{11} +(-1.89731 - 11.8491i) q^{12} +(0.296185 + 0.513008i) q^{13} +(-17.9776 + 14.6541i) q^{14} +(-1.31096 + 8.03023i) q^{15} +(1.87730 + 15.8895i) q^{16} -8.87968 q^{17} +(17.7604 + 2.92725i) q^{18} -14.0989i q^{19} +(2.18718 - 10.6259i) q^{20} +(-12.3134 - 32.5383i) q^{21} +(15.3018 - 12.4729i) q^{22} +(18.2754 - 10.5513i) q^{23} +(-23.4998 - 4.87441i) q^{24} +(8.82205 - 15.2802i) q^{25} +(1.16955 - 0.189102i) q^{26} +(-12.5990 + 23.8802i) q^{27} +(14.6182 + 44.0234i) q^{28} +(10.1764 - 17.6260i) q^{29} +(14.0805 + 8.15802i) q^{30} +(-14.3357 + 8.27670i) q^{31} +(31.0390 + 7.78342i) q^{32} +(10.4806 + 27.6952i) q^{33} +(-6.31095 + 16.6002i) q^{34} -31.4524i q^{35} +(18.0950 - 31.1219i) q^{36} -40.6557 q^{37} +(-26.3573 - 10.0203i) q^{38} +(-0.286328 + 1.75389i) q^{39} +(-18.3103 - 11.6409i) q^{40} +(21.2177 + 36.7502i) q^{41} +(-69.5804 - 0.106123i) q^{42} +(32.2385 + 18.6129i) q^{43} +(-12.4424 - 37.4708i) q^{44} +(-18.2941 + 16.1603i) q^{45} +(-6.73658 - 41.6642i) q^{46} +(-1.57134 - 0.907211i) q^{47} +(-25.8143 + 40.4676i) q^{48} +(42.7423 + 74.0318i) q^{49} +(-22.2958 - 27.3524i) q^{50} +(-20.6226 - 16.8625i) q^{51} +(0.477704 - 2.32083i) q^{52} -21.1005 q^{53} +(35.6888 + 40.5254i) q^{54} +26.7709i q^{55} +(92.6894 + 3.96007i) q^{56} +(26.7738 - 32.7440i) q^{57} +(-25.7186 - 31.5515i) q^{58} +(-76.6879 + 44.2758i) q^{59} +(25.2583 - 20.5248i) q^{60} +(36.4925 - 63.2069i) q^{61} +(5.28433 + 32.6823i) q^{62} +(33.1930 - 98.9519i) q^{63} +(36.6108 - 52.4943i) q^{64} +(-0.803307 + 1.39137i) q^{65} +(59.2238 + 0.0903273i) q^{66} +(38.3110 - 22.1189i) q^{67} +(26.5481 + 23.5961i) q^{68} +(62.4808 + 10.2002i) q^{69} +(-58.7990 - 22.3538i) q^{70} +111.798i q^{71} +(-45.3206 - 55.9468i) q^{72} -76.2003 q^{73} +(-28.8948 + 76.0042i) q^{74} +(49.5060 - 18.7345i) q^{75} +(-37.4652 + 42.1522i) q^{76} +(-57.2337 - 99.1316i) q^{77} +(3.07534 + 1.78181i) q^{78} +(8.30434 + 4.79451i) q^{79} +(-34.7757 + 25.9570i) q^{80} +(-74.6092 + 31.5351i) q^{81} +(83.7828 - 13.5466i) q^{82} +(-73.6244 - 42.5070i) q^{83} +(-49.6505 + 130.002i) q^{84} +(-12.0416 - 20.8567i) q^{85} +(57.7086 - 47.0400i) q^{86} +(57.1060 - 21.6106i) q^{87} +(-78.8931 - 3.37063i) q^{88} +64.7845 q^{89} +(17.2091 + 45.6855i) q^{90} -6.86958i q^{91} +(-82.6773 - 17.0178i) q^{92} +(-49.0114 - 8.00125i) q^{93} +(-2.81277 + 2.29278i) q^{94} +(33.1157 - 19.1193i) q^{95} +(57.3058 + 77.0198i) q^{96} +(-3.59139 + 6.22047i) q^{97} +(168.777 - 27.2892i) q^{98} +(-28.2524 + 84.2235i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q - 3q^{2} - 5q^{4} + 6q^{5} + 9q^{6} - 54q^{8} + 18q^{9} + O(q^{10}) \) \( 16q - 3q^{2} - 5q^{4} + 6q^{5} + 9q^{6} - 54q^{8} + 18q^{9} + 20q^{10} - 36q^{12} - 46q^{13} - 12q^{14} - 17q^{16} + 12q^{17} + 48q^{18} + 36q^{20} - 66q^{21} + 33q^{22} + 129q^{24} - 30q^{25} + 72q^{26} + 12q^{28} + 42q^{29} + 84q^{30} + 87q^{32} - 168q^{33} + 11q^{34} - 81q^{36} + 56q^{37} - 99q^{38} + 68q^{40} + 84q^{41} - 354q^{42} - 222q^{44} + 174q^{45} - 264q^{46} - 189q^{48} + 58q^{49} - 219q^{50} + 110q^{52} - 72q^{53} - 105q^{54} + 270q^{56} + 366q^{57} - 16q^{58} + 432q^{60} - 34q^{61} + 516q^{62} - 254q^{64} - 30q^{65} + 510q^{66} + 375q^{68} - 54q^{69} + 150q^{70} - 45q^{72} + 116q^{73} - 372q^{74} - 15q^{76} - 330q^{77} - 294q^{78} - 720q^{80} - 102q^{81} + 254q^{82} - 714q^{84} - 140q^{85} - 273q^{86} + 75q^{88} - 384q^{89} + 108q^{90} + 258q^{92} - 486q^{93} + 36q^{94} + 900q^{96} - 148q^{97} + 1170q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/36\mathbb{Z}\right)^\times\).

\(n\) \(19\) \(29\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.710719 1.86946i 0.355359 0.934730i
\(3\) 2.32245 + 1.89900i 0.774151 + 0.633001i
\(4\) −2.98976 2.65732i −0.747439 0.664330i
\(5\) 1.35609 + 2.34881i 0.271218 + 0.469763i 0.969174 0.246378i \(-0.0792403\pi\)
−0.697956 + 0.716140i \(0.745907\pi\)
\(6\) 5.20072 2.99207i 0.866787 0.498679i
\(7\) −10.0431 5.79837i −1.43473 0.828339i −0.437249 0.899340i \(-0.644047\pi\)
−0.997476 + 0.0710013i \(0.977381\pi\)
\(8\) −7.09263 + 3.70062i −0.886579 + 0.462578i
\(9\) 1.78756 + 8.82069i 0.198618 + 0.980077i
\(10\) 5.35481 0.865806i 0.535481 0.0865806i
\(11\) 8.54822 + 4.93532i 0.777111 + 0.448665i 0.835406 0.549634i \(-0.185233\pi\)
−0.0582943 + 0.998299i \(0.518566\pi\)
\(12\) −1.89731 11.8491i −0.158109 0.987422i
\(13\) 0.296185 + 0.513008i 0.0227835 + 0.0394622i 0.877192 0.480139i \(-0.159414\pi\)
−0.854409 + 0.519601i \(0.826080\pi\)
\(14\) −17.9776 + 14.6541i −1.28412 + 1.04672i
\(15\) −1.31096 + 8.03023i −0.0873972 + 0.535348i
\(16\) 1.87730 + 15.8895i 0.117331 + 0.993093i
\(17\) −8.87968 −0.522334 −0.261167 0.965294i \(-0.584107\pi\)
−0.261167 + 0.965294i \(0.584107\pi\)
\(18\) 17.7604 + 2.92725i 0.986688 + 0.162625i
\(19\) 14.0989i 0.742046i −0.928624 0.371023i \(-0.879007\pi\)
0.928624 0.371023i \(-0.120993\pi\)
\(20\) 2.18718 10.6259i 0.109359 0.531297i
\(21\) −12.3134 32.5383i −0.586354 1.54944i
\(22\) 15.3018 12.4729i 0.695535 0.566952i
\(23\) 18.2754 10.5513i 0.794583 0.458753i −0.0469902 0.998895i \(-0.514963\pi\)
0.841574 + 0.540142i \(0.181630\pi\)
\(24\) −23.4998 4.87441i −0.979158 0.203101i
\(25\) 8.82205 15.2802i 0.352882 0.611209i
\(26\) 1.16955 0.189102i 0.0449828 0.00727316i
\(27\) −12.5990 + 23.8802i −0.466630 + 0.884453i
\(28\) 14.6182 + 44.0234i 0.522080 + 1.57226i
\(29\) 10.1764 17.6260i 0.350910 0.607793i −0.635499 0.772101i \(-0.719206\pi\)
0.986409 + 0.164308i \(0.0525391\pi\)
\(30\) 14.0805 + 8.15802i 0.469349 + 0.271934i
\(31\) −14.3357 + 8.27670i −0.462441 + 0.266990i −0.713070 0.701093i \(-0.752696\pi\)
0.250629 + 0.968083i \(0.419362\pi\)
\(32\) 31.0390 + 7.78342i 0.969968 + 0.243232i
\(33\) 10.4806 + 27.6952i 0.317595 + 0.839247i
\(34\) −6.31095 + 16.6002i −0.185616 + 0.488241i
\(35\) 31.4524i 0.898641i
\(36\) 18.0950 31.1219i 0.502639 0.864496i
\(37\) −40.6557 −1.09880 −0.549401 0.835559i \(-0.685144\pi\)
−0.549401 + 0.835559i \(0.685144\pi\)
\(38\) −26.3573 10.0203i −0.693613 0.263693i
\(39\) −0.286328 + 1.75389i −0.00734176 + 0.0449716i
\(40\) −18.3103 11.6409i −0.457758 0.291022i
\(41\) 21.2177 + 36.7502i 0.517506 + 0.896346i 0.999793 + 0.0203330i \(0.00647263\pi\)
−0.482288 + 0.876013i \(0.660194\pi\)
\(42\) −69.5804 0.106123i −1.65668 0.00252674i
\(43\) 32.2385 + 18.6129i 0.749732 + 0.432858i 0.825597 0.564260i \(-0.190838\pi\)
−0.0758649 + 0.997118i \(0.524172\pi\)
\(44\) −12.4424 37.4708i −0.282782 0.851609i
\(45\) −18.2941 + 16.1603i −0.406535 + 0.359118i
\(46\) −6.73658 41.6642i −0.146447 0.905743i
\(47\) −1.57134 0.907211i −0.0334327 0.0193024i 0.483191 0.875515i \(-0.339478\pi\)
−0.516623 + 0.856213i \(0.672811\pi\)
\(48\) −25.8143 + 40.4676i −0.537797 + 0.843074i
\(49\) 42.7423 + 74.0318i 0.872291 + 1.51085i
\(50\) −22.2958 27.3524i −0.445916 0.547048i
\(51\) −20.6226 16.8625i −0.404365 0.330638i
\(52\) 0.477704 2.32083i 0.00918662 0.0446313i
\(53\) −21.1005 −0.398122 −0.199061 0.979987i \(-0.563789\pi\)
−0.199061 + 0.979987i \(0.563789\pi\)
\(54\) 35.6888 + 40.5254i 0.660903 + 0.750471i
\(55\) 26.7709i 0.486744i
\(56\) 92.6894 + 3.96007i 1.65517 + 0.0707155i
\(57\) 26.7738 32.7440i 0.469716 0.574456i
\(58\) −25.7186 31.5515i −0.443423 0.543991i
\(59\) −76.6879 + 44.2758i −1.29980 + 0.750437i −0.980369 0.197174i \(-0.936824\pi\)
−0.319427 + 0.947611i \(0.603490\pi\)
\(60\) 25.2583 20.5248i 0.420972 0.342080i
\(61\) 36.4925 63.2069i 0.598238 1.03618i −0.394843 0.918749i \(-0.629201\pi\)
0.993081 0.117431i \(-0.0374657\pi\)
\(62\) 5.28433 + 32.6823i 0.0852311 + 0.527134i
\(63\) 33.1930 98.9519i 0.526873 1.57066i
\(64\) 36.6108 52.4943i 0.572043 0.820223i
\(65\) −0.803307 + 1.39137i −0.0123586 + 0.0214057i
\(66\) 59.2238 + 0.0903273i 0.897330 + 0.00136860i
\(67\) 38.3110 22.1189i 0.571807 0.330133i −0.186064 0.982538i \(-0.559573\pi\)
0.757871 + 0.652405i \(0.226240\pi\)
\(68\) 26.5481 + 23.5961i 0.390413 + 0.347002i
\(69\) 62.4808 + 10.2002i 0.905519 + 0.147829i
\(70\) −58.7990 22.3538i −0.839986 0.319341i
\(71\) 111.798i 1.57462i 0.616557 + 0.787310i \(0.288527\pi\)
−0.616557 + 0.787310i \(0.711473\pi\)
\(72\) −45.3206 55.9468i −0.629453 0.777039i
\(73\) −76.2003 −1.04384 −0.521920 0.852995i \(-0.674784\pi\)
−0.521920 + 0.852995i \(0.674784\pi\)
\(74\) −28.8948 + 76.0042i −0.390470 + 1.02708i
\(75\) 49.5060 18.7345i 0.660080 0.249793i
\(76\) −37.4652 + 42.1522i −0.492964 + 0.554635i
\(77\) −57.2337 99.1316i −0.743294 1.28742i
\(78\) 3.07534 + 1.78181i 0.0394274 + 0.0228437i
\(79\) 8.30434 + 4.79451i 0.105118 + 0.0606901i 0.551637 0.834084i \(-0.314003\pi\)
−0.446519 + 0.894774i \(0.647337\pi\)
\(80\) −34.7757 + 25.9570i −0.434696 + 0.324462i
\(81\) −74.6092 + 31.5351i −0.921102 + 0.389322i
\(82\) 83.7828 13.5466i 1.02174 0.165203i
\(83\) −73.6244 42.5070i −0.887041 0.512133i −0.0140672 0.999901i \(-0.504478\pi\)
−0.872973 + 0.487768i \(0.837811\pi\)
\(84\) −49.6505 + 130.002i −0.591077 + 1.54765i
\(85\) −12.0416 20.8567i −0.141666 0.245373i
\(86\) 57.7086 47.0400i 0.671030 0.546977i
\(87\) 57.1060 21.6106i 0.656391 0.248397i
\(88\) −78.8931 3.37063i −0.896513 0.0383026i
\(89\) 64.7845 0.727916 0.363958 0.931415i \(-0.381425\pi\)
0.363958 + 0.931415i \(0.381425\pi\)
\(90\) 17.2091 + 45.6855i 0.191212 + 0.507616i
\(91\) 6.86958i 0.0754898i
\(92\) −82.6773 17.0178i −0.898666 0.184976i
\(93\) −49.0114 8.00125i −0.527004 0.0860350i
\(94\) −2.81277 + 2.29278i −0.0299231 + 0.0243912i
\(95\) 33.1157 19.1193i 0.348586 0.201256i
\(96\) 57.3058 + 77.0198i 0.596935 + 0.802289i
\(97\) −3.59139 + 6.22047i −0.0370246 + 0.0641285i −0.883944 0.467593i \(-0.845121\pi\)
0.846919 + 0.531721i \(0.178455\pi\)
\(98\) 168.777 27.2892i 1.72222 0.278461i
\(99\) −28.2524 + 84.2235i −0.285378 + 0.850742i
\(100\) −66.9803 + 22.2412i −0.669803 + 0.222412i
\(101\) −55.5037 + 96.1353i −0.549542 + 0.951834i 0.448764 + 0.893650i \(0.351864\pi\)
−0.998306 + 0.0581840i \(0.981469\pi\)
\(102\) −46.1807 + 26.5686i −0.452752 + 0.260477i
\(103\) −79.6133 + 45.9648i −0.772945 + 0.446260i −0.833924 0.551879i \(-0.813911\pi\)
0.0609793 + 0.998139i \(0.480578\pi\)
\(104\) −3.99918 2.54251i −0.0384537 0.0244472i
\(105\) 59.7283 73.0468i 0.568841 0.695683i
\(106\) −14.9965 + 39.4464i −0.141476 + 0.372136i
\(107\) 107.741i 1.00693i −0.864016 0.503465i \(-0.832058\pi\)
0.864016 0.503465i \(-0.167942\pi\)
\(108\) 101.125 37.9165i 0.936346 0.351079i
\(109\) 86.5562 0.794093 0.397047 0.917798i \(-0.370035\pi\)
0.397047 + 0.917798i \(0.370035\pi\)
\(110\) 50.0472 + 19.0266i 0.454974 + 0.172969i
\(111\) −94.4209 77.2054i −0.850639 0.695544i
\(112\) 73.2793 170.465i 0.654279 1.52201i
\(113\) −2.35198 4.07376i −0.0208140 0.0360509i 0.855431 0.517917i \(-0.173292\pi\)
−0.876245 + 0.481866i \(0.839959\pi\)
\(114\) −42.1849 73.3244i −0.370043 0.643196i
\(115\) 49.5662 + 28.6170i 0.431010 + 0.248844i
\(116\) −77.2628 + 25.6556i −0.666059 + 0.221169i
\(117\) −3.99564 + 3.52960i −0.0341507 + 0.0301675i
\(118\) 28.2682 + 174.833i 0.239561 + 1.48163i
\(119\) 89.1793 + 51.4877i 0.749406 + 0.432670i
\(120\) −20.4187 61.8068i −0.170156 0.515056i
\(121\) −11.7852 20.4126i −0.0973987 0.168700i
\(122\) −92.2269 113.144i −0.755958 0.927407i
\(123\) −20.5116 + 125.643i −0.166761 + 1.02149i
\(124\) 64.8540 + 13.3491i 0.523016 + 0.107654i
\(125\) 115.658 0.925267
\(126\) −161.396 132.380i −1.28092 1.05063i
\(127\) 8.37118i 0.0659148i −0.999457 0.0329574i \(-0.989507\pi\)
0.999457 0.0329574i \(-0.0104926\pi\)
\(128\) −72.1160 105.751i −0.563406 0.826180i
\(129\) 39.5264 + 104.449i 0.306406 + 0.809679i
\(130\) 2.03018 + 2.49062i 0.0156168 + 0.0191586i
\(131\) 115.067 66.4338i 0.878372 0.507129i 0.00825098 0.999966i \(-0.497374\pi\)
0.870121 + 0.492837i \(0.164040\pi\)
\(132\) 42.2603 110.652i 0.320154 0.838274i
\(133\) −81.7506 + 141.596i −0.614666 + 1.06463i
\(134\) −14.1220 87.3413i −0.105388 0.651800i
\(135\) −73.1756 + 2.79099i −0.542041 + 0.0206740i
\(136\) 62.9803 32.8603i 0.463090 0.241620i
\(137\) 22.5579 39.0715i 0.164656 0.285193i −0.771877 0.635772i \(-0.780682\pi\)
0.936533 + 0.350579i \(0.114015\pi\)
\(138\) 63.4751 109.556i 0.459964 0.793883i
\(139\) 130.744 75.4848i 0.940601 0.543056i 0.0504522 0.998726i \(-0.483934\pi\)
0.890149 + 0.455670i \(0.150600\pi\)
\(140\) −83.5792 + 94.0351i −0.596994 + 0.671680i
\(141\) −1.92655 5.09093i −0.0136635 0.0361059i
\(142\) 209.002 + 79.4570i 1.47184 + 0.559556i
\(143\) 5.84708i 0.0408887i
\(144\) −136.800 + 44.9626i −0.950003 + 0.312240i
\(145\) 55.2003 0.380692
\(146\) −54.1570 + 142.453i −0.370938 + 0.975708i
\(147\) −41.3198 + 253.103i −0.281087 + 1.72179i
\(148\) 121.551 + 108.035i 0.821289 + 0.729968i
\(149\) 71.3914 + 123.653i 0.479137 + 0.829889i 0.999714 0.0239255i \(-0.00761646\pi\)
−0.520577 + 0.853815i \(0.674283\pi\)
\(150\) 0.161463 105.864i 0.00107642 0.705763i
\(151\) −220.027 127.033i −1.45713 0.841276i −0.458263 0.888817i \(-0.651528\pi\)
−0.998869 + 0.0475407i \(0.984862\pi\)
\(152\) 52.1746 + 99.9981i 0.343254 + 0.657882i
\(153\) −15.8730 78.3249i −0.103745 0.511927i
\(154\) −226.000 + 36.5413i −1.46753 + 0.237281i
\(155\) −38.8808 22.4479i −0.250844 0.144825i
\(156\) 5.51671 4.48285i 0.0353635 0.0287362i
\(157\) 2.65361 + 4.59618i 0.0169020 + 0.0292751i 0.874353 0.485291i \(-0.161286\pi\)
−0.857451 + 0.514566i \(0.827953\pi\)
\(158\) 14.8652 12.1171i 0.0940836 0.0766904i
\(159\) −49.0048 40.0698i −0.308206 0.252012i
\(160\) 23.8098 + 83.4598i 0.148811 + 0.521624i
\(161\) −244.722 −1.52001
\(162\) 5.92744 + 161.892i 0.0365892 + 0.999330i
\(163\) 59.5534i 0.365359i −0.983173 0.182679i \(-0.941523\pi\)
0.983173 0.182679i \(-0.0584770\pi\)
\(164\) 34.2211 166.256i 0.208665 1.01376i
\(165\) −50.8381 + 62.1742i −0.308110 + 0.376813i
\(166\) −131.791 + 107.427i −0.793924 + 0.647152i
\(167\) 85.7434 49.5040i 0.513434 0.296431i −0.220810 0.975317i \(-0.570870\pi\)
0.734244 + 0.678886i \(0.237537\pi\)
\(168\) 207.747 + 185.215i 1.23659 + 1.10247i
\(169\) 84.3245 146.054i 0.498962 0.864227i
\(170\) −47.5490 + 7.68808i −0.279700 + 0.0452240i
\(171\) 124.362 25.2027i 0.727263 0.147384i
\(172\) −46.9248 141.316i −0.272819 0.821605i
\(173\) 19.2965 33.4225i 0.111540 0.193193i −0.804851 0.593477i \(-0.797755\pi\)
0.916391 + 0.400283i \(0.131088\pi\)
\(174\) 0.186250 122.116i 0.00107040 0.701818i
\(175\) −177.201 + 102.307i −1.01258 + 0.584612i
\(176\) −62.3721 + 145.092i −0.354387 + 0.824386i
\(177\) −262.184 42.8023i −1.48126 0.241821i
\(178\) 46.0436 121.112i 0.258672 0.680405i
\(179\) 36.4264i 0.203499i −0.994810 0.101750i \(-0.967556\pi\)
0.994810 0.101750i \(-0.0324441\pi\)
\(180\) 97.6379 + 0.297833i 0.542433 + 0.00165463i
\(181\) −18.5921 −0.102719 −0.0513594 0.998680i \(-0.516355\pi\)
−0.0513594 + 0.998680i \(0.516355\pi\)
\(182\) −12.8424 4.88234i −0.0705626 0.0268260i
\(183\) 204.782 77.4956i 1.11903 0.423473i
\(184\) −90.5743 + 142.467i −0.492252 + 0.774277i
\(185\) −55.1327 95.4927i −0.298015 0.516177i
\(186\) −49.7913 + 85.9381i −0.267695 + 0.462033i
\(187\) −75.9055 43.8240i −0.405912 0.234353i
\(188\) 2.28716 + 6.88788i 0.0121658 + 0.0366377i
\(189\) 264.999 166.777i 1.40211 0.882419i
\(190\) −12.2069 75.4968i −0.0642468 0.397352i
\(191\) 244.973 + 141.435i 1.28258 + 0.740497i 0.977319 0.211772i \(-0.0679233\pi\)
0.305260 + 0.952269i \(0.401257\pi\)
\(192\) 184.714 52.3915i 0.962050 0.272872i
\(193\) −151.542 262.479i −0.785193 1.35999i −0.928884 0.370372i \(-0.879230\pi\)
0.143691 0.989623i \(-0.454103\pi\)
\(194\) 9.07644 + 11.1350i 0.0467858 + 0.0573967i
\(195\) −4.50786 + 1.70590i −0.0231172 + 0.00874822i
\(196\) 68.9371 334.917i 0.351720 1.70876i
\(197\) 139.184 0.706520 0.353260 0.935525i \(-0.385073\pi\)
0.353260 + 0.935525i \(0.385073\pi\)
\(198\) 137.373 + 112.676i 0.693802 + 0.569071i
\(199\) 11.2337i 0.0564505i −0.999602 0.0282253i \(-0.991014\pi\)
0.999602 0.0282253i \(-0.00898558\pi\)
\(200\) −6.02512 + 141.024i −0.0301256 + 0.705121i
\(201\) 130.979 + 21.3828i 0.651639 + 0.106382i
\(202\) 140.273 + 172.087i 0.694423 + 0.851916i
\(203\) −204.404 + 118.013i −1.00692 + 0.581344i
\(204\) 16.8475 + 105.216i 0.0825856 + 0.515764i
\(205\) −57.5462 + 99.6730i −0.280713 + 0.486210i
\(206\) 29.3466 + 181.502i 0.142459 + 0.881077i
\(207\) 125.738 + 142.341i 0.607432 + 0.687636i
\(208\) −7.59541 + 5.66930i −0.0365164 + 0.0272563i
\(209\) 69.5825 120.520i 0.332931 0.576653i
\(210\) −94.1079 163.575i −0.448133 0.778930i
\(211\) 112.017 64.6728i 0.530884 0.306506i −0.210492 0.977595i \(-0.567507\pi\)
0.741376 + 0.671090i \(0.234173\pi\)
\(212\) 63.0852 + 56.0707i 0.297572 + 0.264484i
\(213\) −212.305 + 259.646i −0.996737 + 1.21899i
\(214\) −201.418 76.5739i −0.941207 0.357822i
\(215\) 100.963i 0.469595i
\(216\) 0.988317 215.998i 0.00457554 0.999990i
\(217\) 191.966 0.884634
\(218\) 61.5171 161.813i 0.282189 0.742263i
\(219\) −176.971 144.705i −0.808089 0.660752i
\(220\) 71.1389 80.0386i 0.323359 0.363812i
\(221\) −2.63003 4.55535i −0.0119006 0.0206124i
\(222\) −211.439 + 121.645i −0.952428 + 0.547949i
\(223\) 209.210 + 120.787i 0.938159 + 0.541647i 0.889383 0.457163i \(-0.151134\pi\)
0.0487765 + 0.998810i \(0.484468\pi\)
\(224\) −266.596 258.145i −1.19016 1.15243i
\(225\) 150.552 + 50.5022i 0.669121 + 0.224454i
\(226\) −9.28732 + 1.50164i −0.0410943 + 0.00664444i
\(227\) −330.710 190.936i −1.45687 0.841126i −0.458016 0.888944i \(-0.651440\pi\)
−0.998856 + 0.0478181i \(0.984773\pi\)
\(228\) −167.058 + 26.7499i −0.732713 + 0.117324i
\(229\) 74.6642 + 129.322i 0.326044 + 0.564725i 0.981723 0.190315i \(-0.0609508\pi\)
−0.655679 + 0.755040i \(0.727617\pi\)
\(230\) 88.7260 72.3233i 0.385765 0.314449i
\(231\) 55.3289 338.915i 0.239519 1.46717i
\(232\) −6.95007 + 162.674i −0.0299572 + 0.701180i
\(233\) −218.934 −0.939631 −0.469816 0.882765i \(-0.655680\pi\)
−0.469816 + 0.882765i \(0.655680\pi\)
\(234\) 3.75866 + 9.97823i 0.0160627 + 0.0426420i
\(235\) 4.92103i 0.0209406i
\(236\) 346.933 + 71.4105i 1.47006 + 0.302587i
\(237\) 10.1816 + 26.9050i 0.0429605 + 0.113523i
\(238\) 159.636 130.124i 0.670738 0.546739i
\(239\) −218.254 + 126.009i −0.913197 + 0.527235i −0.881458 0.472262i \(-0.843438\pi\)
−0.0317388 + 0.999496i \(0.510104\pi\)
\(240\) −130.057 5.75531i −0.541905 0.0239804i
\(241\) −226.014 + 391.467i −0.937816 + 1.62435i −0.168282 + 0.985739i \(0.553822\pi\)
−0.769534 + 0.638606i \(0.779511\pi\)
\(242\) −46.5366 + 7.52439i −0.192300 + 0.0310925i
\(243\) −233.162 68.4445i −0.959513 0.281664i
\(244\) −277.065 + 92.0011i −1.13551 + 0.377053i
\(245\) −115.925 + 200.787i −0.473162 + 0.819540i
\(246\) 220.307 + 127.643i 0.895556 + 0.518872i
\(247\) 7.23284 4.17588i 0.0292828 0.0169064i
\(248\) 71.0486 111.754i 0.286486 0.450623i
\(249\) −90.2680 238.534i −0.362522 0.957966i
\(250\) 82.2006 216.219i 0.328802 0.864874i
\(251\) 139.429i 0.555492i 0.960655 + 0.277746i \(0.0895874\pi\)
−0.960655 + 0.277746i \(0.910413\pi\)
\(252\) −362.186 + 207.638i −1.43725 + 0.823959i
\(253\) 208.297 0.823306
\(254\) −15.6496 5.94955i −0.0616125 0.0234234i
\(255\) 11.6409 71.3058i 0.0456505 0.279631i
\(256\) −248.951 + 59.6587i −0.972467 + 0.233042i
\(257\) 235.308 + 407.565i 0.915594 + 1.58586i 0.806029 + 0.591875i \(0.201612\pi\)
0.109564 + 0.993980i \(0.465054\pi\)
\(258\) 223.355 + 0.340657i 0.865715 + 0.00132038i
\(259\) 408.308 + 235.737i 1.57648 + 0.910181i
\(260\) 6.09901 2.02521i 0.0234577 0.00778928i
\(261\) 173.665 + 58.2551i 0.665381 + 0.223200i
\(262\) −42.4152 262.328i −0.161890 1.00125i
\(263\) −22.2028 12.8188i −0.0844214 0.0487407i 0.457195 0.889366i \(-0.348854\pi\)
−0.541616 + 0.840626i \(0.682187\pi\)
\(264\) −176.825 157.647i −0.669790 0.597146i
\(265\) −28.6141 49.5610i −0.107978 0.187023i
\(266\) 206.607 + 253.464i 0.776717 + 0.952874i
\(267\) 150.459 + 123.026i 0.563517 + 0.460772i
\(268\) −173.318 35.6746i −0.646708 0.133114i
\(269\) 8.15075 0.0303002 0.0151501 0.999885i \(-0.495177\pi\)
0.0151501 + 0.999885i \(0.495177\pi\)
\(270\) −46.7896 + 138.782i −0.173295 + 0.514009i
\(271\) 401.979i 1.48332i 0.670777 + 0.741659i \(0.265961\pi\)
−0.670777 + 0.741659i \(0.734039\pi\)
\(272\) −16.6698 141.094i −0.0612861 0.518726i
\(273\) 13.0454 15.9543i 0.0477852 0.0584405i
\(274\) −57.0102 69.9400i −0.208067 0.255255i
\(275\) 150.826 87.0792i 0.548457 0.316652i
\(276\) −159.697 196.527i −0.578613 0.712056i
\(277\) 56.2021 97.3449i 0.202896 0.351426i −0.746565 0.665313i \(-0.768298\pi\)
0.949460 + 0.313887i \(0.101631\pi\)
\(278\) −48.1939 298.068i −0.173359 1.07219i
\(279\) −98.6321 111.655i −0.353520 0.400198i
\(280\) 116.394 + 223.080i 0.415691 + 0.796716i
\(281\) 268.867 465.692i 0.956823 1.65727i 0.226681 0.973969i \(-0.427212\pi\)
0.730141 0.683296i \(-0.239454\pi\)
\(282\) −10.8865 0.0166040i −0.0386047 5.88794e-5i
\(283\) 122.303 70.6114i 0.432164 0.249510i −0.268104 0.963390i \(-0.586397\pi\)
0.700268 + 0.713880i \(0.253064\pi\)
\(284\) 297.083 334.249i 1.04607 1.17693i
\(285\) 113.217 + 18.4830i 0.397253 + 0.0648528i
\(286\) 10.9309 + 4.15563i 0.0382199 + 0.0145302i
\(287\) 492.113i 1.71468i
\(288\) −13.1710 + 287.699i −0.0457325 + 0.998954i
\(289\) −210.151 −0.727167
\(290\) 39.2319 103.195i 0.135282 0.355844i
\(291\) −20.1535 + 7.62667i −0.0692561 + 0.0262085i
\(292\) 227.820 + 202.489i 0.780207 + 0.693454i
\(293\) −230.291 398.875i −0.785975 1.36135i −0.928415 0.371545i \(-0.878828\pi\)
0.142440 0.989803i \(-0.454505\pi\)
\(294\) 443.799 + 257.131i 1.50952 + 0.874595i
\(295\) −207.991 120.084i −0.705055 0.407064i
\(296\) 288.356 150.451i 0.974175 0.508282i
\(297\) −225.556 + 141.953i −0.759447 + 0.477958i
\(298\) 281.904 45.5804i 0.945988 0.152954i
\(299\) 10.8258 + 6.25029i 0.0362068 + 0.0209040i
\(300\) −197.795 75.5417i −0.659315 0.251806i
\(301\) −215.849 373.862i −0.717107 1.24206i
\(302\) −393.860 + 321.047i −1.30417 + 1.06307i
\(303\) −311.466 + 117.868i −1.02794 + 0.389002i
\(304\) 224.024 26.4678i 0.736921 0.0870653i
\(305\) 197.948 0.649011
\(306\) −157.706 25.9931i −0.515381 0.0849446i
\(307\) 210.322i 0.685089i 0.939502 + 0.342545i \(0.111289\pi\)
−0.939502 + 0.342545i \(0.888711\pi\)
\(308\) −92.3096 + 448.468i −0.299707 + 1.45606i
\(309\) −272.185 44.4351i −0.880859 0.143803i
\(310\) −69.5987 + 56.7320i −0.224512 + 0.183007i
\(311\) −110.993 + 64.0821i −0.356892 + 0.206052i −0.667717 0.744416i \(-0.732728\pi\)
0.310824 + 0.950467i \(0.399395\pi\)
\(312\) −4.45968 13.4993i −0.0142938 0.0432670i
\(313\) −3.62140 + 6.27245i −0.0115700 + 0.0200398i −0.871752 0.489947i \(-0.837016\pi\)
0.860182 + 0.509986i \(0.170350\pi\)
\(314\) 10.4784 1.69422i 0.0333705 0.00539560i
\(315\) 277.432 56.2233i 0.880737 0.178487i
\(316\) −12.0874 36.4017i −0.0382513 0.115195i
\(317\) −120.145 + 208.098i −0.379007 + 0.656460i −0.990918 0.134467i \(-0.957068\pi\)
0.611911 + 0.790927i \(0.290401\pi\)
\(318\) −109.738 + 63.1341i −0.345087 + 0.198535i
\(319\) 173.980 100.447i 0.545392 0.314882i
\(320\) 172.947 + 14.8050i 0.540459 + 0.0462656i
\(321\) 204.602 250.224i 0.637388 0.779515i
\(322\) −173.928 + 457.498i −0.540151 + 1.42080i
\(323\) 125.194i 0.387596i
\(324\) 306.862 + 103.978i 0.947106 + 0.320920i
\(325\) 10.4518 0.0321595
\(326\) −111.333 42.3258i −0.341512 0.129834i
\(327\) 201.023 + 164.371i 0.614748 + 0.502662i
\(328\) −286.488 182.137i −0.873439 0.555294i
\(329\) 10.5207 + 18.2224i 0.0319778 + 0.0553872i
\(330\) 80.1005 + 139.228i 0.242729 + 0.421903i
\(331\) −370.385 213.842i −1.11899 0.646048i −0.177845 0.984058i \(-0.556913\pi\)
−0.941142 + 0.338011i \(0.890246\pi\)
\(332\) 107.164 + 322.729i 0.322784 + 0.972076i
\(333\) −72.6747 358.612i −0.218242 1.07691i
\(334\) −31.6062 195.477i −0.0946295 0.585261i
\(335\) 103.906 + 59.9904i 0.310168 + 0.179076i
\(336\) 493.901 256.738i 1.46994 0.764102i
\(337\) 152.442 + 264.037i 0.452349 + 0.783492i 0.998531 0.0541746i \(-0.0172528\pi\)
−0.546182 + 0.837666i \(0.683919\pi\)
\(338\) −213.112 261.445i −0.630508 0.773506i
\(339\) 2.27371 13.9275i 0.00670711 0.0410842i
\(340\) −19.4214 + 94.3550i −0.0571218 + 0.277515i
\(341\) −163.393 −0.479157
\(342\) 41.2710 250.402i 0.120675 0.732168i
\(343\) 423.102i 1.23353i
\(344\) −297.535 12.7119i −0.864927 0.0369532i
\(345\) 60.7712 + 160.588i 0.176148 + 0.465473i
\(346\) −48.7676 59.8280i −0.140947 0.172913i
\(347\) 146.406 84.5276i 0.421919 0.243595i −0.273979 0.961736i \(-0.588340\pi\)
0.695898 + 0.718140i \(0.255006\pi\)
\(348\) −228.159 87.1386i −0.655630 0.250398i
\(349\) 107.298 185.846i 0.307444 0.532509i −0.670358 0.742037i \(-0.733860\pi\)
0.977802 + 0.209529i \(0.0671930\pi\)
\(350\) 65.3188 + 403.982i 0.186625 + 1.15423i
\(351\) −15.9824 + 0.609584i −0.0455339 + 0.00173671i
\(352\) 226.915 + 219.722i 0.644644 + 0.624209i
\(353\) −275.895 + 477.865i −0.781574 + 1.35373i 0.149451 + 0.988769i \(0.452249\pi\)
−0.931025 + 0.364956i \(0.881084\pi\)
\(354\) −266.356 + 459.722i −0.752419 + 1.29865i
\(355\) −262.593 + 151.608i −0.739698 + 0.427065i
\(356\) −193.690 172.153i −0.544073 0.483577i
\(357\) 109.339 + 288.930i 0.306272 + 0.809326i
\(358\) −68.0977 25.8889i −0.190217 0.0723155i
\(359\) 554.828i 1.54548i 0.634721 + 0.772741i \(0.281115\pi\)
−0.634721 + 0.772741i \(0.718885\pi\)
\(360\) 69.9499 182.318i 0.194305 0.506440i
\(361\) 162.222 0.449367
\(362\) −13.2138 + 34.7572i −0.0365021 + 0.0960143i
\(363\) 11.3930 69.7876i 0.0313858 0.192252i
\(364\) −18.2547 + 20.5384i −0.0501502 + 0.0564241i
\(365\) −103.334 178.980i −0.283108 0.490357i
\(366\) 0.667895 437.910i 0.00182485 1.19648i
\(367\) −145.642 84.0864i −0.396845 0.229118i 0.288277 0.957547i \(-0.406918\pi\)
−0.685122 + 0.728429i \(0.740251\pi\)
\(368\) 201.963 + 270.579i 0.548814 + 0.735269i
\(369\) −286.234 + 252.848i −0.775702 + 0.685226i
\(370\) −217.704 + 35.2000i −0.588388 + 0.0951350i
\(371\) 211.913 + 122.348i 0.571195 + 0.329780i
\(372\) 125.270 + 154.161i 0.336748 + 0.414410i
\(373\) 171.699 + 297.391i 0.460318 + 0.797295i 0.998977 0.0452296i \(-0.0144020\pi\)
−0.538658 + 0.842524i \(0.681069\pi\)
\(374\) −135.875 + 110.756i −0.363301 + 0.296138i
\(375\) 268.611 + 219.636i 0.716296 + 0.585695i
\(376\) 14.5021 + 0.619590i 0.0385695 + 0.00164785i
\(377\) 12.0564 0.0319798
\(378\) −123.443 613.937i −0.326570 1.62417i
\(379\) 602.392i 1.58943i −0.606986 0.794713i \(-0.707621\pi\)
0.606986 0.794713i \(-0.292379\pi\)
\(380\) −149.814 30.8367i −0.394247 0.0811493i
\(381\) 15.8969 19.4417i 0.0417242 0.0510280i
\(382\) 438.514 357.446i 1.14794 0.935722i
\(383\) 315.762 182.305i 0.824443 0.475992i −0.0275035 0.999622i \(-0.508756\pi\)
0.851946 + 0.523630i \(0.175422\pi\)
\(384\) 33.3358 382.550i 0.0868119 0.996225i
\(385\) 155.228 268.862i 0.403189 0.698344i
\(386\) −598.398 + 96.7534i −1.55025 + 0.250657i
\(387\) −106.550 + 317.638i −0.275324 + 0.820769i
\(388\) 27.2672 9.05422i 0.0702762 0.0233356i
\(389\) 107.326 185.893i 0.275901 0.477875i −0.694461 0.719530i \(-0.744357\pi\)
0.970362 + 0.241656i \(0.0776904\pi\)
\(390\) −0.0147023 + 9.63968i −3.76982e−5 + 0.0247171i
\(391\) −162.280 + 93.6923i −0.415038 + 0.239622i
\(392\) −577.119 366.907i −1.47224 0.935987i
\(393\) 393.395 + 64.2229i 1.00101 + 0.163417i
\(394\) 98.9209 260.200i 0.251068 0.660405i
\(395\) 26.0071i 0.0658409i
\(396\) 308.277 176.732i 0.778476 0.446293i
\(397\) −684.628 −1.72450 −0.862251 0.506480i \(-0.830946\pi\)
−0.862251 + 0.506480i \(0.830946\pi\)
\(398\) −21.0009 7.98397i −0.0527660 0.0200602i
\(399\) −458.754 + 173.606i −1.14976 + 0.435102i
\(400\) 259.357 + 111.492i 0.648392 + 0.278731i
\(401\) 95.1918 + 164.877i 0.237386 + 0.411164i 0.959963 0.280125i \(-0.0903761\pi\)
−0.722577 + 0.691290i \(0.757043\pi\)
\(402\) 133.064 229.664i 0.331004 0.571302i
\(403\) −8.49203 4.90287i −0.0210720 0.0121659i
\(404\) 421.405 139.930i 1.04308 0.346361i
\(405\) −175.247 132.479i −0.432708 0.327108i
\(406\) 75.3463 + 466.000i 0.185582 + 1.14778i
\(407\) −347.534 200.649i −0.853892 0.492995i
\(408\) 208.671 + 43.2832i 0.511447 + 0.106086i
\(409\) 188.978 + 327.320i 0.462049 + 0.800293i 0.999063 0.0432806i \(-0.0137809\pi\)
−0.537014 + 0.843574i \(0.680448\pi\)
\(410\) 145.435 + 178.420i 0.354721 + 0.435170i
\(411\) 126.587 47.9040i 0.307997 0.116555i
\(412\) 360.168 + 74.1345i 0.874193 + 0.179938i
\(413\) 1026.91 2.48647
\(414\) 355.465 133.899i 0.858611 0.323427i
\(415\) 230.573i 0.555598i
\(416\) 5.20034 + 18.2286i 0.0125008 + 0.0438187i
\(417\) 446.991 + 72.9727i 1.07192 + 0.174994i
\(418\) −175.854 215.738i −0.420704 0.516119i
\(419\) 267.326 154.341i 0.638009 0.368355i −0.145838 0.989308i \(-0.546588\pi\)
0.783847 + 0.620954i \(0.213255\pi\)
\(420\) −372.682 + 59.6749i −0.887338 + 0.142083i
\(421\) 176.834 306.286i 0.420034 0.727521i −0.575908 0.817514i \(-0.695351\pi\)
0.995942 + 0.0899938i \(0.0286847\pi\)
\(422\) −41.2909 255.374i −0.0978457 0.605153i
\(423\) 5.19337 15.4820i 0.0122775 0.0366004i
\(424\) 149.658 78.0848i 0.352966 0.184162i
\(425\) −78.3369 + 135.684i −0.184322 + 0.319255i
\(426\) 334.508 + 581.431i 0.785230 + 1.36486i
\(427\) −732.995 + 423.195i −1.71662 + 0.991088i
\(428\) −286.304 + 322.121i −0.668934 + 0.752619i
\(429\) −11.1036 + 13.5796i −0.0258826 + 0.0316540i
\(430\) 188.746 + 71.7563i 0.438945 + 0.166875i
\(431\) 472.777i 1.09693i −0.836174 0.548465i \(-0.815213\pi\)
0.836174 0.548465i \(-0.184787\pi\)
\(432\) −403.097 155.361i −0.933094 0.359633i
\(433\) 61.4188 0.141845 0.0709224 0.997482i \(-0.477406\pi\)
0.0709224 + 0.997482i \(0.477406\pi\)
\(434\) 136.434 358.872i 0.314363 0.826893i
\(435\) 128.200 + 104.826i 0.294713 + 0.240978i
\(436\) −258.782 230.007i −0.593537 0.527540i
\(437\) −148.762 257.663i −0.340416 0.589618i
\(438\) −396.296 + 227.997i −0.904787 + 0.520540i
\(439\) 354.347 + 204.582i 0.807169 + 0.466019i 0.845972 0.533228i \(-0.179021\pi\)
−0.0388030 + 0.999247i \(0.512354\pi\)
\(440\) −99.0691 189.876i −0.225157 0.431537i
\(441\) −576.607 + 509.353i −1.30750 + 1.15500i
\(442\) −10.3853 + 1.67917i −0.0234960 + 0.00379902i
\(443\) 668.806 + 386.136i 1.50972 + 0.871638i 0.999936 + 0.0113360i \(0.00360844\pi\)
0.509785 + 0.860302i \(0.329725\pi\)
\(444\) 77.1363 + 481.732i 0.173730 + 1.08498i
\(445\) 87.8536 + 152.167i 0.197424 + 0.341948i
\(446\) 374.496 305.263i 0.839677 0.684446i
\(447\) −69.0155 + 422.752i −0.154397 + 0.945753i
\(448\) −672.066 + 314.921i −1.50015 + 0.702949i
\(449\) −789.037 −1.75732 −0.878660 0.477448i \(-0.841562\pi\)
−0.878660 + 0.477448i \(0.841562\pi\)
\(450\) 201.412 245.558i 0.447582 0.545685i
\(451\) 418.865i 0.928747i
\(452\) −3.79341 + 18.4295i −0.00839250 + 0.0407733i
\(453\) −269.767 712.859i −0.595511 1.57364i
\(454\) −591.988 + 482.548i −1.30394 + 1.06288i
\(455\) 16.1354 9.31575i 0.0354623 0.0204742i
\(456\) −68.7238 + 331.321i −0.150710 + 0.726581i
\(457\) 138.165 239.309i 0.302331 0.523653i −0.674332 0.738428i \(-0.735568\pi\)
0.976664 + 0.214775i \(0.0689018\pi\)
\(458\) 294.828 47.6700i 0.643728 0.104083i
\(459\) 111.875 212.049i 0.243737 0.461980i
\(460\) −72.1462 217.271i −0.156840 0.472329i
\(461\) −294.041 + 509.295i −0.637834 + 1.10476i 0.348073 + 0.937467i \(0.386836\pi\)
−0.985907 + 0.167293i \(0.946497\pi\)
\(462\) −594.265 344.309i −1.28629 0.745257i
\(463\) 677.285 391.031i 1.46282 0.844558i 0.463677 0.886004i \(-0.346530\pi\)
0.999141 + 0.0414459i \(0.0131964\pi\)
\(464\) 299.172 + 128.608i 0.644768 + 0.277173i
\(465\) −47.6703 125.969i −0.102517 0.270901i
\(466\) −155.601 + 409.288i −0.333907 + 0.878301i
\(467\) 663.203i 1.42014i −0.704133 0.710068i \(-0.748664\pi\)
0.704133 0.710068i \(-0.251336\pi\)
\(468\) 21.3253 + 0.0650501i 0.0455668 + 0.000138996i
\(469\) −513.014 −1.09385
\(470\) −9.19967 3.49747i −0.0195738 0.00744143i
\(471\) −2.56530 + 15.7136i −0.00544649 + 0.0333623i
\(472\) 380.071 597.825i 0.805235 1.26658i
\(473\) 183.721 + 318.214i 0.388417 + 0.672758i
\(474\) 57.5341 + 0.0877503i 0.121380 + 0.000185127i
\(475\) −215.434 124.381i −0.453546 0.261855i
\(476\) −129.805 390.914i −0.272700 0.821247i
\(477\) −37.7184 186.121i −0.0790743 0.390190i
\(478\) 80.4516 + 497.574i 0.168309 + 1.04095i
\(479\) −562.018 324.481i −1.17331 0.677414i −0.218856 0.975757i \(-0.570233\pi\)
−0.954459 + 0.298344i \(0.903566\pi\)
\(480\) −103.193 + 239.046i −0.214986 + 0.498013i
\(481\) −12.0416 20.8567i −0.0250346 0.0433611i
\(482\) 571.200 + 700.746i 1.18506 + 1.45383i
\(483\) −568.355 464.728i −1.17672 0.962170i
\(484\) −19.0079 + 92.3460i −0.0392725 + 0.190798i
\(485\) −19.4810 −0.0401669
\(486\) −293.667 + 387.241i −0.604252 + 0.796793i
\(487\) 282.104i 0.579269i 0.957137 + 0.289635i \(0.0935338\pi\)
−0.957137 + 0.289635i \(0.906466\pi\)
\(488\) −24.9230 + 583.348i −0.0510717 + 1.19539i
\(489\) 113.092 138.310i 0.231272 0.282843i
\(490\) 292.974 + 359.420i 0.597906 + 0.733510i
\(491\) −652.933 + 376.971i −1.32980 + 0.767762i −0.985269 0.171012i \(-0.945296\pi\)
−0.344534 + 0.938774i \(0.611963\pi\)
\(492\) 395.199 321.136i 0.803249 0.652716i
\(493\) −90.3630 + 156.513i −0.183292 + 0.317471i
\(494\) −2.66613 16.4894i −0.00539702 0.0333793i
\(495\) −236.138 + 47.8548i −0.477047 + 0.0966763i
\(496\) −158.425 212.248i −0.319405 0.427920i
\(497\) 648.247 1122.80i 1.30432 2.25915i
\(498\) −510.084 0.777973i −1.02427 0.00156220i
\(499\) 446.169 257.596i 0.894126 0.516224i 0.0188362 0.999823i \(-0.494004\pi\)
0.875290 + 0.483599i \(0.160671\pi\)
\(500\) −345.790 307.341i −0.691581 0.614682i
\(501\) 293.143 + 47.8565i 0.585116 + 0.0955220i
\(502\) 260.656 + 99.0945i 0.519235 + 0.197399i
\(503\) 523.660i 1.04107i 0.853839 + 0.520537i \(0.174268\pi\)
−0.853839 + 0.520537i \(0.825732\pi\)
\(504\) 130.758 + 824.664i 0.259440 + 1.63624i
\(505\) −301.072 −0.596182
\(506\) 148.040 389.402i 0.292570 0.769569i
\(507\) 473.198 179.072i 0.933329 0.353198i
\(508\) −22.2449 + 25.0278i −0.0437892 + 0.0492673i
\(509\) −267.685 463.645i −0.525905 0.910893i −0.999545 0.0301749i \(-0.990394\pi\)
0.473640 0.880719i \(-0.342940\pi\)
\(510\) −125.030 72.4406i −0.245157 0.142040i
\(511\) 765.285 + 441.838i 1.49762 + 0.864653i
\(512\) −65.4050 + 507.805i −0.127744 + 0.991807i
\(513\) 336.684 + 177.632i 0.656305 + 0.346261i
\(514\) 929.163 150.234i 1.80771 0.292284i
\(515\) −215.925 124.665i −0.419273 0.242067i
\(516\) 159.379 417.310i 0.308874 0.808741i
\(517\) −8.95475 15.5101i −0.0173206 0.0300002i
\(518\) 730.893 595.773i 1.41099 1.15014i
\(519\) 108.285 40.9780i 0.208641 0.0789557i
\(520\) 0.548628 12.8412i 0.00105505 0.0246946i
\(521\) 177.268 0.340246 0.170123 0.985423i \(-0.445584\pi\)
0.170123 + 0.985423i \(0.445584\pi\)
\(522\) 232.332 283.256i 0.445081 0.542636i
\(523\) 444.206i 0.849343i 0.905347 + 0.424672i \(0.139610\pi\)
−0.905347 + 0.424672i \(0.860390\pi\)
\(524\) −520.558 107.148i −0.993431 0.204481i
\(525\) −605.822 98.9023i −1.15395 0.188385i
\(526\) −39.7442 + 32.3967i −0.0755593 + 0.0615907i
\(527\) 127.296 73.4944i 0.241548 0.139458i
\(528\) −420.386 + 218.524i −0.796186 + 0.413872i
\(529\) −41.8394 + 72.4679i −0.0790914 + 0.136990i
\(530\) −112.989 + 18.2689i −0.213187 + 0.0344696i
\(531\) −527.628 597.295i −0.993649 1.12485i
\(532\) 620.681 206.101i 1.16669 0.387407i
\(533\) −12.5688 + 21.7697i −0.0235812 + 0.0408438i
\(534\) 336.926 193.840i 0.630948 0.362996i
\(535\) 253.065 146.107i 0.473018 0.273097i
\(536\) −189.872 + 298.656i −0.354239 + 0.557194i
\(537\) 69.1739 84.5986i 0.128815 0.157539i
\(538\) 5.79289 15.2375i 0.0107675 0.0283225i
\(539\) 843.787i 1.56547i
\(540\) 226.194 + 186.107i 0.418877 + 0.344642i
\(541\) 571.163 1.05575 0.527877 0.849321i \(-0.322988\pi\)
0.527877 + 0.849321i \(0.322988\pi\)
\(542\) 751.484 + 285.694i 1.38650 + 0.527111i
\(543\) −43.1793 35.3065i −0.0795198 0.0650211i
\(544\) −275.616 69.1142i −0.506647 0.127048i
\(545\) 117.378 + 203.304i 0.215372 + 0.373036i
\(546\) −20.5543 35.7268i −0.0376452 0.0654336i
\(547\) −139.875 80.7569i −0.255713 0.147636i 0.366664 0.930353i \(-0.380500\pi\)
−0.622377 + 0.782717i \(0.713833\pi\)
\(548\) −171.268 + 56.8706i −0.312533 + 0.103779i
\(549\) 622.762 + 208.903i 1.13436 + 0.380515i
\(550\) −55.5965 343.851i −0.101085 0.625184i
\(551\) −248.507 143.476i −0.451011 0.260391i
\(552\) −480.900 + 158.872i −0.871196 + 0.287811i
\(553\) −55.6008 96.3034i −0.100544 0.174147i
\(554\) −142.038 174.252i −0.256387 0.314535i
\(555\) 53.2979 326.475i 0.0960323 0.588242i
\(556\) −591.479 121.746i −1.06381 0.218968i
\(557\) −568.917 −1.02139 −0.510697 0.859761i \(-0.670613\pi\)
−0.510697 + 0.859761i \(0.670613\pi\)
\(558\) −278.835 + 105.033i −0.499704 + 0.188232i
\(559\) 22.0515i 0.0394481i
\(560\) 499.763 59.0457i 0.892434 0.105439i
\(561\) −93.0647 245.924i −0.165891 0.438367i
\(562\) −679.503 833.612i −1.20908 1.48330i
\(563\) −250.527 + 144.642i −0.444985 + 0.256912i −0.705710 0.708501i \(-0.749372\pi\)
0.260725 + 0.965413i \(0.416038\pi\)
\(564\) −7.76829 + 20.3401i −0.0137736 + 0.0360640i
\(565\) 6.37900 11.0487i 0.0112903 0.0195553i
\(566\) −45.0824 278.824i −0.0796510 0.492623i
\(567\) 932.159 + 115.903i 1.64402 + 0.204414i
\(568\) −413.723 792.942i −0.728385 1.39603i
\(569\) −223.117 + 386.450i −0.392121 + 0.679174i −0.992729 0.120370i \(-0.961592\pi\)
0.600608 + 0.799544i \(0.294925\pi\)
\(570\) 115.019 198.519i 0.201788 0.348278i
\(571\) −372.386 + 214.997i −0.652164 + 0.376527i −0.789285 0.614027i \(-0.789549\pi\)
0.137121 + 0.990554i \(0.456215\pi\)
\(572\) 15.5376 17.4813i 0.0271636 0.0305618i
\(573\) 300.351 + 793.680i 0.524173 + 1.38513i
\(574\) −919.986 349.754i −1.60276 0.609328i
\(575\) 372.337i 0.647542i
\(576\) 528.480 + 229.095i 0.917500 + 0.397735i
\(577\) 50.9694 0.0883353 0.0441676 0.999024i \(-0.485936\pi\)
0.0441676 + 0.999024i \(0.485936\pi\)
\(578\) −149.359 + 392.869i −0.258406 + 0.679705i
\(579\) 146.499 897.374i 0.253021 1.54987i
\(580\) −165.035 146.685i −0.284544 0.252905i
\(581\) 492.943 + 853.803i 0.848440 + 1.46954i
\(582\) −0.0657304 + 43.0966i −0.000112939 + 0.0740492i
\(583\) −180.371 104.137i −0.309385 0.178623i
\(584\) 540.460 281.989i 0.925446 0.482857i
\(585\) −13.7088 4.59856i −0.0234339 0.00786079i
\(586\) −909.353 + 147.031i −1.55180 + 0.250906i
\(587\) 643.771 + 371.681i 1.09671 + 0.633188i 0.935356 0.353708i \(-0.115079\pi\)
0.161358 + 0.986896i \(0.448413\pi\)
\(588\) 796.112 646.917i 1.35393 1.10020i
\(589\) 116.692 + 202.117i 0.198119 + 0.343152i
\(590\) −372.315 + 303.485i −0.631042 + 0.514382i
\(591\) 323.249 + 264.312i 0.546953 + 0.447228i
\(592\) −76.3230 645.998i −0.128924 1.09121i
\(593\) −382.547 −0.645104 −0.322552 0.946552i \(-0.604541\pi\)
−0.322552 + 0.946552i \(0.604541\pi\)
\(594\) 105.070 + 522.556i 0.176885 + 0.879724i
\(595\) 279.287i 0.469391i
\(596\) 115.144 559.404i 0.193195 0.938597i
\(597\) 21.3328 26.0896i 0.0357333 0.0437012i
\(598\) 19.3788 15.7962i 0.0324060 0.0264151i
\(599\) −856.248 + 494.355i −1.42946 + 0.825301i −0.997078 0.0763888i \(-0.975661\pi\)
−0.432384 + 0.901689i \(0.642328\pi\)
\(600\) −281.798 + 316.080i −0.469664 + 0.526800i
\(601\) −263.280 + 456.015i −0.438070 + 0.758760i −0.997541 0.0700905i \(-0.977671\pi\)
0.559470 + 0.828850i \(0.311005\pi\)
\(602\) −852.327 + 137.811i −1.41583 + 0.228921i
\(603\) 263.587 + 298.391i 0.437127 + 0.494844i
\(604\) 320.261 + 964.479i 0.530233 + 1.59682i
\(605\) 31.9637 55.3627i 0.0528325 0.0915086i
\(606\) −1.01584 + 666.044i −0.00167631 + 1.09908i
\(607\) −447.631 + 258.440i −0.737448 + 0.425766i −0.821141 0.570726i \(-0.806662\pi\)
0.0836928 + 0.996492i \(0.473329\pi\)
\(608\) 109.737 437.615i 0.180489 0.719761i
\(609\) −698.826 114.085i −1.14750 0.187332i
\(610\) 140.686 370.057i 0.230632 0.606650i
\(611\) 1.07481i 0.00175910i
\(612\) −160.678 + 276.352i −0.262546 + 0.451556i
\(613\) 762.957 1.24463 0.622314 0.782768i \(-0.286193\pi\)
0.622314 + 0.782768i \(0.286193\pi\)
\(614\) 393.189 + 149.480i 0.640373 + 0.243453i
\(615\) −322.928 + 122.205i −0.525086 + 0.198708i
\(616\) 772.786 + 491.303i 1.25452 + 0.797571i
\(617\) 60.9168 + 105.511i 0.0987307 + 0.171007i 0.911160 0.412054i \(-0.135188\pi\)
−0.812429 + 0.583060i \(0.801855\pi\)
\(618\) −276.517 + 477.259i −0.447438 + 0.772263i
\(619\) −265.675 153.388i −0.429200 0.247799i 0.269806 0.962915i \(-0.413041\pi\)
−0.699006 + 0.715116i \(0.746374\pi\)
\(620\) 56.5931 + 170.433i 0.0912793 + 0.274891i
\(621\) 21.7158 + 569.357i 0.0349692 + 0.916839i
\(622\) 40.9138 + 253.042i 0.0657778 + 0.406820i
\(623\) −650.636 375.645i −1.04436 0.602961i
\(624\) −28.4060 1.25703i −0.0455224 0.00201446i
\(625\) −63.7082 110.346i −0.101933 0.176553i
\(626\) 9.15230 + 11.2280i 0.0146203 + 0.0179361i
\(627\) 390.471 147.765i 0.622760 0.235670i
\(628\) 4.27989 20.7930i 0.00681511 0.0331098i
\(629\) 361.010 0.573942
\(630\) 92.0692 558.607i 0.146142 0.886678i
\(631\) 1071.11i 1.69749i −0.528805 0.848744i \(-0.677360\pi\)
0.528805 0.848744i \(-0.322640\pi\)
\(632\) −76.6423 3.27447i −0.121269 0.00518112i
\(633\) 382.967 + 62.5205i 0.605003 + 0.0987685i
\(634\) 303.641 + 372.506i 0.478929 + 0.587549i
\(635\) 19.6623 11.3521i 0.0309643 0.0178773i
\(636\) 40.0340 + 250.021i 0.0629465 + 0.393114i
\(637\) −25.3193 + 43.8543i −0.0397477 + 0.0688450i
\(638\) −64.1315 396.638i −0.100520 0.621690i
\(639\) −986.136 + 199.846i −1.54325 + 0.312748i
\(640\) 150.594 312.795i 0.235303 0.488742i
\(641\) 527.259 913.240i 0.822557 1.42471i −0.0812143 0.996697i \(-0.525880\pi\)
0.903772 0.428015i \(-0.140787\pi\)
\(642\) −322.370 560.333i −0.502134 0.872794i
\(643\) 42.0680 24.2880i 0.0654246 0.0377729i −0.466931 0.884294i \(-0.654640\pi\)
0.532355 + 0.846521i \(0.321307\pi\)
\(644\) 731.659 + 650.305i 1.13612 + 1.00979i
\(645\) −191.729 + 234.482i −0.297254 + 0.363537i
\(646\) 234.044 + 88.9774i 0.362298 + 0.137736i
\(647\) 539.373i 0.833653i −0.908986 0.416826i \(-0.863142\pi\)
0.908986 0.416826i \(-0.136858\pi\)
\(648\) 412.476 499.768i 0.636537 0.771246i
\(649\) −874.061 −1.34678
\(650\) 7.42832 19.5393i 0.0114282 0.0300605i
\(651\) 445.831 + 364.543i 0.684840 + 0.559974i
\(652\) −158.253 + 178.050i −0.242719 + 0.273083i
\(653\) −276.457 478.838i −0.423365 0.733290i 0.572901 0.819624i \(-0.305818\pi\)
−0.996266 + 0.0863348i \(0.972485\pi\)
\(654\) 450.155 258.982i 0.688310 0.395997i
\(655\) 312.081 + 180.180i 0.476460 + 0.275084i
\(656\) −544.109 + 406.130i −0.829435 + 0.619100i
\(657\) −136.213 672.139i −0.207326 1.02304i
\(658\) 41.5433 6.71703i 0.0631357 0.0102082i
\(659\) 734.162 + 423.869i 1.11406 + 0.643200i 0.939877 0.341514i \(-0.110940\pi\)
0.174178 + 0.984714i \(0.444273\pi\)
\(660\) 317.210 50.7926i 0.480622 0.0769585i
\(661\) −359.447 622.580i −0.543792 0.941876i −0.998682 0.0513280i \(-0.983655\pi\)
0.454890 0.890548i \(-0.349679\pi\)
\(662\) −663.008 + 540.438i −1.00152 + 0.816372i
\(663\) 2.54250 15.5740i 0.00383485 0.0234902i
\(664\) 679.493 + 29.0307i 1.02333 + 0.0437209i
\(665\) −443.444 −0.666833
\(666\) −722.061 119.010i −1.08418 0.178693i
\(667\) 429.497i 0.643923i
\(668\) −387.900 79.8428i −0.580689 0.119525i
\(669\) 256.504 + 677.812i 0.383414 + 1.01317i
\(670\) 185.998 151.612i 0.277609 0.226287i
\(671\) 623.893 360.205i 0.929796 0.536818i
\(672\) −128.937 1105.80i −0.191871 1.64553i
\(673\) 288.488 499.675i 0.428659 0.742460i −0.568095 0.822963i \(-0.692319\pi\)
0.996754 + 0.0805033i \(0.0256528\pi\)
\(674\) 601.949 97.3277i 0.893100 0.144403i
\(675\) 253.746 + 403.188i 0.375921 + 0.597316i
\(676\) −640.223 + 212.590i −0.947076 + 0.314482i
\(677\) −101.021 + 174.974i −0.149219 + 0.258454i −0.930939 0.365175i \(-0.881009\pi\)
0.781720 + 0.623629i \(0.214343\pi\)
\(678\) −24.4210 14.1492i −0.0360191 0.0208690i
\(679\) 72.1372 41.6484i 0.106240 0.0613379i
\(680\) 162.590 + 103.367i 0.239102 + 0.152011i
\(681\) −405.471 1071.46i −0.595405 1.57336i
\(682\) −116.126 + 305.456i −0.170273 + 0.447882i
\(683\) 568.249i 0.831990i 0.909367 + 0.415995i \(0.136567\pi\)
−0.909367 + 0.415995i \(0.863433\pi\)
\(684\) −438.783 255.119i −0.641496 0.372982i
\(685\) 122.362 0.178631
\(686\) −790.972 300.707i −1.15302 0.438348i
\(687\) −72.1793 + 442.132i −0.105065 + 0.643569i
\(688\) −235.228 + 547.195i −0.341901 + 0.795341i
\(689\) −6.24965 10.8247i −0.00907060 0.0157107i
\(690\) 343.404 + 0.523756i 0.497687 + 0.000759066i
\(691\) 351.376 + 202.867i 0.508504 + 0.293585i 0.732218 0.681070i \(-0.238485\pi\)
−0.223714 + 0.974655i \(0.571818\pi\)
\(692\) −146.506 + 48.6482i −0.211714 + 0.0703008i
\(693\) 772.100 682.045i 1.11414 0.984191i
\(694\) −53.9673 333.775i −0.0777627 0.480945i
\(695\) 354.600 + 204.728i 0.510215 + 0.294573i
\(696\) −325.059 + 364.604i −0.467039 + 0.523856i
\(697\) −188.407 326.330i −0.270311 0.468192i
\(698\) −271.172 332.673i −0.388499 0.476609i
\(699\) −508.464 415.757i −0.727416 0.594788i
\(700\) 801.651 + 165.007i 1.14522 + 0.235724i
\(701\) 83.5164 0.119139 0.0595695 0.998224i \(-0.481027\pi\)
0.0595695 + 0.998224i \(0.481027\pi\)
\(702\) −10.2194 + 30.3117i −0.0145575 + 0.0431790i
\(703\) 573.200i 0.815363i
\(704\) 572.033 268.047i 0.812547 0.380749i
\(705\) 9.34506 11.4289i 0.0132554 0.0162112i
\(706\) 697.265 + 855.403i 0.987628 + 1.21162i
\(707\) 1114.86 643.663i 1.57688 0.910414i
\(708\) 670.127 + 824.675i 0.946507 + 1.16480i
\(709\) −173.908 + 301.217i −0.245286 + 0.424848i −0.962212 0.272302i \(-0.912215\pi\)
0.716926 + 0.697149i \(0.245548\pi\)
\(710\) 96.7955 + 598.657i 0.136332 + 0.843180i
\(711\) −27.4464 + 81.8205i −0.0386025 + 0.115078i
\(712\) −459.493 + 239.743i −0.645355 + 0.336718i
\(713\) −174.660 + 302.520i −0.244965 + 0.424292i
\(714\) 617.852 + 0.942339i 0.865338 + 0.00131980i
\(715\) −13.7337 + 7.92916i −0.0192080 + 0.0110897i
\(716\) −96.7966 + 108.906i −0.135191 + 0.152104i
\(717\) −746.177 121.816i −1.04069 0.169896i
\(718\) 1037.23 + 394.327i 1.44461 + 0.549202i
\(719\) 536.277i 0.745865i −0.927858 0.372933i \(-0.878352\pi\)
0.927858 0.372933i \(-0.121648\pi\)
\(720\) −291.122 260.346i −0.404336 0.361591i
\(721\) 1066.08 1.47862
\(722\) 115.294 303.267i 0.159687 0.420037i
\(723\) −1268.30 + 479.963i −1.75422 + 0.663849i
\(724\) 55.5859 + 49.4052i 0.0767761 + 0.0682392i
\(725\) −179.553 310.995i −0.247659 0.428959i
\(726\) −122.368 70.8982i −0.168551 0.0976559i
\(727\) −815.055 470.573i −1.12112 0.647280i −0.179435 0.983770i \(-0.557427\pi\)
−0.941687 + 0.336490i \(0.890760\pi\)
\(728\) 25.4217 + 48.7233i 0.0349199 + 0.0669277i
\(729\) −411.530 601.734i −0.564514 0.825424i
\(730\) −408.038 + 65.9747i −0.558956 + 0.0903763i
\(731\) −286.267 165.277i −0.391611 0.226096i
\(732\) −818.180 312.479i −1.11773 0.426885i
\(733\) 311.063 + 538.777i 0.424370 + 0.735030i 0.996361 0.0852294i \(-0.0271623\pi\)
−0.571991 + 0.820260i \(0.693829\pi\)
\(734\) −260.707 + 212.510i −0.355186 + 0.289523i
\(735\) −650.525 + 246.178i −0.885068 + 0.334935i
\(736\) 649.376 185.257i 0.882304 0.251708i
\(737\) 436.655 0.592477
\(738\) 269.258 + 714.807i 0.364848 + 0.968573i
\(739\) 444.439i 0.601406i 0.953718 + 0.300703i \(0.0972213\pi\)
−0.953718 + 0.300703i \(0.902779\pi\)
\(740\) −88.9212 + 432.005i −0.120164 + 0.583791i
\(741\) 24.7279 + 4.03691i 0.0333710 + 0.00544792i
\(742\) 379.336 309.208i 0.511235 0.416723i
\(743\) 66.2270 38.2362i 0.0891346 0.0514619i −0.454770 0.890609i \(-0.650279\pi\)
0.543905 + 0.839147i \(0.316945\pi\)
\(744\) 377.229 124.623i 0.507028 0.167504i
\(745\) −193.626 + 335.370i −0.259901 + 0.450161i
\(746\) 677.990 109.622i 0.908833 0.146947i
\(747\) 243.333 725.402i 0.325747 0.971087i
\(748\) 110.484 + 332.728i 0.147706 + 0.444824i
\(749\) −624.725 + 1082.06i −0.834079 + 1.44467i
\(750\) 601.507 346.058i 0.802009 0.461411i
\(751\) 949.025 547.920i 1.26368 0.729587i 0.289897 0.957058i \(-0.406379\pi\)
0.973785 + 0.227471i \(0.0730457\pi\)
\(752\) 11.4652 26.6708i 0.0152463 0.0354665i
\(753\) −264.775 + 323.816i −0.351627 + 0.430034i
\(754\) 8.56870 22.5389i 0.0113643 0.0298925i
\(755\) 689.070i 0.912676i
\(756\) −1235.46 205.564i −1.63421 0.271910i
\(757\) −346.346 −0.457525 −0.228762 0.973482i \(-0.573468\pi\)
−0.228762 + 0.973482i \(0.573468\pi\)
\(758\) −1126.15 428.132i −1.48568 0.564817i
\(759\) 483.759 + 395.556i 0.637363 + 0.521154i
\(760\) −164.124 + 258.155i −0.215952 + 0.339677i
\(761\) −106.565 184.576i −0.140033 0.242544i 0.787476 0.616345i \(-0.211387\pi\)
−0.927509 + 0.373802i \(0.878054\pi\)
\(762\) −25.0472 43.5362i −0.0328703 0.0571341i
\(763\) −869.291 501.885i −1.13931 0.657779i
\(764\) −356.571 1073.83i −0.466715 1.40553i
\(765\) 162.445 143.498i 0.212347 0.187579i
\(766\) −116.394 719.871i −0.151951 0.939779i
\(767\) −45.4277 26.2277i −0.0592277 0.0341952i
\(768\) −691.470 334.206i −0.900351