Properties

Label 36.3.f
Level $36$
Weight $3$
Character orbit 36.f
Rep. character $\chi_{36}(7,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $20$
Newform subspaces $3$
Sturm bound $18$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 36 = 2^{2} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 36.f (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 36 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 3 \)
Sturm bound: \(18\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(5\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(36, [\chi])\).

Total New Old
Modular forms 28 28 0
Cusp forms 20 20 0
Eisenstein series 8 8 0

Trace form

\( 20 q - q^{2} - q^{4} - 2 q^{5} - 9 q^{6} - 22 q^{8} + 4 q^{10} - 36 q^{12} - 2 q^{13} - 24 q^{14} - q^{16} - 32 q^{17} + 12 q^{18} + 52 q^{20} - 30 q^{21} - 9 q^{22} + 129 q^{24} - 12 q^{25} + 160 q^{26}+ \cdots + 1022 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(36, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
36.3.f.a 36.f 36.f $2$ $0.981$ \(\Q(\sqrt{-3}) \) None 36.3.f.a \(-2\) \(3\) \(-4\) \(6\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-2+2\zeta_{6})q^{2}+3\zeta_{6}q^{3}-4\zeta_{6}q^{4}+\cdots\)
36.3.f.b 36.f 36.f $2$ $0.981$ \(\Q(\sqrt{-3}) \) None 36.3.f.a \(4\) \(-3\) \(-4\) \(-6\) $\mathrm{SU}(2)[C_{6}]$ \(q+2q^{2}-3\zeta_{6}q^{3}+4q^{4}+(-4+4\zeta_{6})q^{5}+\cdots\)
36.3.f.c 36.f 36.f $16$ $0.981$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 36.3.f.c \(-3\) \(0\) \(6\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q-\beta _{1}q^{2}+\beta _{14}q^{3}+(-\beta _{2}+\beta _{3})q^{4}+\cdots\)