Properties

Label 36.3
Level 36
Weight 3
Dimension 28
Nonzero newspaces 3
Newform subspaces 7
Sturm bound 216
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 36 = 2^{2} \cdot 3^{2} \)
Weight: \( k \) = \( 3 \)
Nonzero newspaces: \( 3 \)
Newform subspaces: \( 7 \)
Sturm bound: \(216\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(36))\).

Total New Old
Modular forms 92 38 54
Cusp forms 52 28 24
Eisenstein series 40 10 30

Trace form

\( 28 q + q^{2} + 3 q^{3} + 3 q^{4} + 11 q^{5} - 9 q^{6} - q^{7} - 38 q^{8} - 15 q^{9} - 24 q^{10} - 36 q^{11} - 36 q^{12} - 13 q^{13} - 45 q^{15} + 15 q^{16} - 52 q^{17} + 12 q^{18} + 2 q^{19} + 44 q^{20}+ \cdots + 171 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(36))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
36.3.c \(\chi_{36}(17, \cdot)\) None 0 1
36.3.d \(\chi_{36}(19, \cdot)\) 36.3.d.a 1 1
36.3.d.b 1
36.3.d.c 2
36.3.f \(\chi_{36}(7, \cdot)\) 36.3.f.a 2 2
36.3.f.b 2
36.3.f.c 16
36.3.g \(\chi_{36}(5, \cdot)\) 36.3.g.a 4 2

Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(36))\) into lower level spaces

\( S_{3}^{\mathrm{old}}(\Gamma_1(36)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 9}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 2}\)