Defining parameters
Level: | \( N \) | = | \( 36 = 2^{2} \cdot 3^{2} \) |
Weight: | \( k \) | = | \( 22 \) |
Nonzero newspaces: | \( 4 \) | ||
Sturm bound: | \(1584\) | ||
Trace bound: | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{22}(\Gamma_1(36))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 776 | 349 | 427 |
Cusp forms | 736 | 341 | 395 |
Eisenstein series | 40 | 8 | 32 |
Trace form
Decomposition of \(S_{22}^{\mathrm{new}}(\Gamma_1(36))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{22}^{\mathrm{old}}(\Gamma_1(36))\) into lower level spaces
\( S_{22}^{\mathrm{old}}(\Gamma_1(36)) \cong \) \(S_{22}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 9}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 3}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 3}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 2}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 2}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_1(36))\)\(^{\oplus 1}\)