Properties

Label 36.22
Level 36
Weight 22
Dimension 341
Nonzero newspaces 4
Sturm bound 1584
Trace bound 3

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 36 = 2^{2} \cdot 3^{2} \)
Weight: \( k \) = \( 22 \)
Nonzero newspaces: \( 4 \)
Sturm bound: \(1584\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{22}(\Gamma_1(36))\).

Total New Old
Modular forms 776 349 427
Cusp forms 736 341 395
Eisenstein series 40 8 32

Trace form

\( 341 q - 3 q^{2} - 6591 q^{3} - 2424085 q^{4} - 38076786 q^{5} + 73477605 q^{6} - 232771614 q^{7} + 12880498491 q^{9} - 141983250920 q^{10} - 21700804917 q^{11} - 504668625126 q^{12} - 1332034874504 q^{13}+ \cdots + 73\!\cdots\!42 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{22}^{\mathrm{new}}(\Gamma_1(36))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
36.22.a \(\chi_{36}(1, \cdot)\) 36.22.a.a 1 1
36.22.a.b 2
36.22.a.c 2
36.22.a.d 4
36.22.b \(\chi_{36}(35, \cdot)\) 36.22.b.a 2 1
36.22.b.b 40
36.22.e \(\chi_{36}(13, \cdot)\) 36.22.e.a 42 2
36.22.h \(\chi_{36}(11, \cdot)\) n/a 248 2

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{22}^{\mathrm{old}}(\Gamma_1(36))\) into lower level spaces

\( S_{22}^{\mathrm{old}}(\Gamma_1(36)) \cong \) \(S_{22}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 9}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 3}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 3}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 2}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 2}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_1(36))\)\(^{\oplus 1}\)