Properties

Label 36.2.b
Level 36
Weight 2
Character orbit b
Rep. character \(\chi_{36}(35,\cdot)\)
Character field \(\Q\)
Dimension 2
Newforms 1
Sturm bound 12
Trace bound 0

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 36 = 2^{2} \cdot 3^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 36.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 12 \)
Character field: \(\Q\)
Newforms: \( 1 \)
Sturm bound: \(12\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(36, [\chi])\).

Total New Old
Modular forms 10 2 8
Cusp forms 2 2 0
Eisenstein series 8 0 8

Trace form

\( 2q - 4q^{4} + O(q^{10}) \) \( 2q - 4q^{4} + 4q^{10} - 8q^{13} + 8q^{16} + 6q^{25} - 20q^{34} + 4q^{37} - 8q^{40} + 14q^{49} + 16q^{52} + 28q^{58} - 20q^{61} - 16q^{64} - 32q^{73} + 4q^{82} + 20q^{85} + 16q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(36, [\chi])\) into irreducible Hecke orbits

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
36.2.b.a \(2\) \(0.287\) \(\Q(\sqrt{-2}) \) \(\Q(\sqrt{-1}) \) \(0\) \(0\) \(0\) \(0\) \(q+\beta q^{2}-2q^{4}-\beta q^{5}-2\beta q^{8}+2q^{10}+\cdots\)