Properties

Label 3584.2.b.a
Level $3584$
Weight $2$
Character orbit 3584.b
Analytic conductor $28.618$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 3584 = 2^{9} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3584.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(28.6183840844\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-2}) \)
Defining polynomial: \( x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{-2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{3} - q^{7} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta q^{3} - q^{7} + q^{9} + \beta q^{11} - \beta q^{19} - \beta q^{21} + 4 q^{23} + 5 q^{25} + 4 \beta q^{27} - 2 \beta q^{29} - 4 q^{31} - 2 q^{33} + 2 \beta q^{37} + 6 q^{41} + 3 \beta q^{43} + 4 q^{47} + q^{49} - 6 \beta q^{53} + 2 q^{57} + 5 \beta q^{59} + 4 \beta q^{61} - q^{63} + \beta q^{67} + 4 \beta q^{69} - 8 q^{71} + 8 q^{73} + 5 \beta q^{75} - \beta q^{77} + 4 q^{79} - 5 q^{81} + 5 \beta q^{83} + 4 q^{87} + 8 q^{89} - 4 \beta q^{93} - 8 q^{97} + \beta q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{7} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{7} + 2 q^{9} + 8 q^{23} + 10 q^{25} - 8 q^{31} - 4 q^{33} + 12 q^{41} + 8 q^{47} + 2 q^{49} + 4 q^{57} - 2 q^{63} - 16 q^{71} + 16 q^{73} + 8 q^{79} - 10 q^{81} + 8 q^{87} + 16 q^{89} - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3584\mathbb{Z}\right)^\times\).

\(n\) \(1023\) \(1025\) \(1541\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1793.1
1.41421i
1.41421i
0 1.41421i 0 0 0 −1.00000 0 1.00000 0
1793.2 0 1.41421i 0 0 0 −1.00000 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3584.2.b.a 2
4.b odd 2 1 3584.2.b.b 2
8.b even 2 1 inner 3584.2.b.a 2
8.d odd 2 1 3584.2.b.b 2
16.e even 4 2 3584.2.a.b yes 2
16.f odd 4 2 3584.2.a.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3584.2.a.a 2 16.f odd 4 2
3584.2.a.b yes 2 16.e even 4 2
3584.2.b.a 2 1.a even 1 1 trivial
3584.2.b.a 2 8.b even 2 1 inner
3584.2.b.b 2 4.b odd 2 1
3584.2.b.b 2 8.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3584, [\chi])\):

\( T_{3}^{2} + 2 \) Copy content Toggle raw display
\( T_{23} - 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 2 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( (T + 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 2 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 2 \) Copy content Toggle raw display
$23$ \( (T - 4)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 8 \) Copy content Toggle raw display
$31$ \( (T + 4)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 8 \) Copy content Toggle raw display
$41$ \( (T - 6)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 18 \) Copy content Toggle raw display
$47$ \( (T - 4)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + 72 \) Copy content Toggle raw display
$59$ \( T^{2} + 50 \) Copy content Toggle raw display
$61$ \( T^{2} + 32 \) Copy content Toggle raw display
$67$ \( T^{2} + 2 \) Copy content Toggle raw display
$71$ \( (T + 8)^{2} \) Copy content Toggle raw display
$73$ \( (T - 8)^{2} \) Copy content Toggle raw display
$79$ \( (T - 4)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 50 \) Copy content Toggle raw display
$89$ \( (T - 8)^{2} \) Copy content Toggle raw display
$97$ \( (T + 8)^{2} \) Copy content Toggle raw display
show more
show less